Effect of Variable Viscosity on Linear Thermal Convection in Ferromagnetic Liquids under Terrestrial Gravity Condition

  IJMTT-book-cover
 
International Journal of Mathematics Trends and Technology (IJMTT)
 
© 2019 by IJMTT Journal
Volume-65 Issue-12
Year of Publication : 2019
Authors : Roopa G., D. Uma
  10.14445/22315373/IJMTT-V65I12P518

MLA

MLA Style:Roopa G., D. Uma  "Effect of Variable Viscosity on Linear Thermal Convection in Ferromagnetic Liquids under Terrestrial Gravity Condition" International Journal of Mathematics Trends and Technology 65.12 (2019):166-170. 

APA Style: Roopa G., D. Uma(2019). Effect of Variable Viscosity on Linear Thermal Convection in Ferromagnetic Liquids under Terrestrial Gravity Condition International Journal of Mathematics Trends and Technology, 166-170.

Abstract
The stability analyses of linear theory of ferroconvection in ferromagnetic liquid in the presence of variable viscosity have been studied under terrestrial gravity condition using the generalized Lorenz model. The obtained results show that the stability of the studied ferrofluid system depends on several parameters, namely, magnetic field dependent viscosity V, buoyancy M1 and non-buoyancy force M3. Furthermore, the effects of various parameters on the critical stability parameters Ras and kc are discussed in more detail through graphical and tabular illustrations.

Reference
[1] Lorenz E. N. ,"Deterministic Non-Periodic Flow", J. Atmos. Sci., (1963), vol. 20, pp. 130-141.
[2] Neuringer J. L., Rosensweig R. E., "Ferro hydrodynamics", Physics of fluids., (1964), vol. 7, pp. 1927 - 1937.
[3] Rosensweig R. E., Kaiser R., Miskolczy G., "Viscosity of magnetic fluid in a magnetic field", J. Colloid Interface Sci., (1968), vol. 29, pp. 680 – 686.
[4] Finlayson B. A., "Convective instability of ferromagnetic fluids'', J. Fluid Mech., (1970), vol. 40, pp. 753 – 767.
[5] Gupta, M. D., Gupta A. S., "Convective instability of a layer of ferromagnetic fluid rotating about a vertical axis" , Int. J. Eng. Sci., (1979), vol. 17, pp. 271 – 277.
[6] Gotoh K., Yamada M., "Thermal convection in a horizontal layer of magnetic fluids", J. Phys. Soc. Jpn., (1982), vol. 51, pp. 3042 – 3048.
[7] Stavans J., Heslot F., Libchaber A., "Fixed Winding Number and the Quasi Periodic Route to Chaos in a Convective Fluid", A. Phys Rev Lett. (1985), vol. 55, pp. 596 – 599.
[8] Kaloni P. N., Lou J. X., "Convective instability of magnetic fluids", Physical Review E, (2004), vol. pp. 70, 0263131 – 12 .
[9] Siddheshwar P. G., Abraham A., "Effect of time-periodic boundary temperatures/body force on Rayleigh-Benard convection in a ferromagnetic Fluid", Acta Mech., (2003), vol. 161, pp.131 – 150.
[10] Sunil and Mahajan A., "A nonlinear stability analysis for magnetized ferrofluid heated from below saturating a porous medium", Proc. R. Soc. Lond.A, (2008), vol. 464, pp. 83 – 98.
[11] Sekhar G. N., Jayalatha G., "Elastic effects on Rayleigh-Benard convection in liquids with temperature-dependent viscosity", Int. J. of Thermal Sciences., (2010), vol. 49, pp. 67 – 79.
[12] Laroze D., Siddheshwar P. G. and Pleiner H.,"Chaotic Convection in a Ferrofluid", Commun. Nonlinear
[13] Sci. Numer. Simul. (2013), vol. 18, pp. 2436 – 2447.
[14] Sekhar G. N., Jayalatha G., Prakash R., "Thermal convection in variable viscosity ferromagnetic liquids with
[15] heat source", Int. J. Applied Computational Mathematics., (2017), vol. 3, pp. 3539-3559.

Keywords
Thermal convection, Ferromagnetic liquid, Variable viscosity, Generalized Lorenz model.