Volume 65 | Issue 12 | Year 2019 | Article Id. IJMTT-V65I12P518 | DOI : https://doi.org/10.14445/22315373/IJMTT-V65I12P518
The stability analyses of linear theory of ferroconvection in ferromagnetic liquid in the presence of variable viscosity have been studied under terrestrial gravity condition using the generalized Lorenz model. The obtained results show that the stability of the studied ferrofluid system depends on several parameters, namely, magnetic field dependent viscosity V, buoyancy 𝑀1and non-buoyancy force 𝑀3 . Furthermore, the effects of various parameters on the critical stability parameters 𝑅𝑎𝑠 and 𝑘𝑐 are discussed in more detail through graphical and tabular illustrations.
[1] Lorenz E. N. ,"Deterministic Non-Periodic Flow", J. Atmos. Sci., (1963), vol. 20, pp. 130-141.
[2] Neuringer J. L., Rosensweig R. E., "Ferro hydrodynamics", Physics of fluids., (1964), vol. 7, pp. 1927 - 1937.
[3] Rosensweig R. E., Kaiser R., Miskolczy G., "Viscosity of magnetic fluid in a magnetic field", J. Colloid Interface Sci., (1968), vol. 29, pp. 680 – 686.
[4] Finlayson B. A., "Convective instability of ferromagnetic fluids'', J. Fluid Mech., (1970), vol. 40, pp. 753 – 767.
[5] Gupta, M. D., Gupta A. S., "Convective instability of a layer of ferromagnetic fluid rotating about a vertical axis" , Int. J. Eng. Sci., (1979), vol. 17, pp. 271 – 277.
[6] Gotoh K., Yamada M., "Thermal convection in a horizontal layer of magnetic fluids", J. Phys. Soc. Jpn., (1982), vol. 51, pp. 3042 – 3048.
[7] Stavans J., Heslot F., Libchaber A., "Fixed Winding Number and the Quasi Periodic Route to Chaos in a Convective Fluid", A. Phys Rev Lett. (1985), vol. 55, pp. 596 – 599.
[8] Kaloni P. N., Lou J. X., "Convective instability of magnetic fluids", Physical Review E, (2004), vol. pp. 70, 0263131 – 12 .
[9] Siddheshwar P. G., Abraham A., "Effect of time-periodic boundary temperatures/body force on Rayleigh-Benard convection in a ferromagnetic Fluid", Acta Mech., (2003), vol. 161, pp.131 – 150.
[10] Sunil and Mahajan A., "A nonlinear stability analysis for magnetized ferrofluid heated from below saturating a porous medium", Proc. R. Soc. Lond.A, (2008), vol. 464, pp. 83 – 98.
[11] Sekhar G. N., Jayalatha G., "Elastic effects on Rayleigh-Benard convection in liquids with temperature-dependent viscosity", Int. J. of Thermal Sciences., (2010), vol. 49, pp. 67 – 79.
[12] Laroze D., Siddheshwar P. G. and Pleiner H.,"Chaotic Convection in a Ferrofluid", Commun. Nonlinear
[13] Sci. Numer. Simul. (2013), vol. 18, pp. 2436 – 2447.
[14] Sekhar G. N., Jayalatha G., Prakash R., "Thermal convection in variable viscosity ferromagnetic liquids with
[15] heat source", Int. J. Applied Computational Mathematics., (2017), vol. 3, pp. 3539-3559.
Roopa G., D. Uma, "Effect of Variable Viscosity on Linear Thermal Convection in Ferromagnetic Liquids under Terrestrial Gravity Condition," International Journal of Mathematics Trends and Technology (IJMTT), vol. 65, no. 12, pp. 166-170, 2019. Crossref, https://doi.org/10.14445/22315373/IJMTT-V65I12P518