Volume 65 | Issue 1 | Year 2019 | Article Id. IJMTT-V65I1P505 | DOI : https://doi.org/10.14445/22315373/IJMTT-V65I1P505
In this paper we explore isomorphy and unitary isomorphy of frames for Hilbert spaces with a view to investigating properties of some frames left invariant under these equivalence relations. We will also define new equivalences of Hilbert space frames.
[1] R. Balan, Equivalence relations and distances between Hilbert frames, Proc. Amer. Math. Soc. 128, No.8(1999),2353–2366.
[2] P. Balazs, Frames and finite dimensionality:Frame transformation, classification and algorithms, Applied Mathematical Sciences 2,
No. 43 (2008),2131–2144.
[3]J.J.BenedetoandD.Colella,Waveletanalysisofspectrogramseizurechirps,Proc.SPIEWaveletAppl. inSignal and Image Proc. III 2569,
San Diego, CA (July 1995), 512–521.
[4]J.J.BenedetoandG.E.PfanderColella,Waveletperiodicitydetectionalgorithms,Proc.SPIEWavelet
Appl.inSignalandImageProc.IV3459,SanDiego,CA(July1998),48–55.
[5] B.G. Bodmann, P.G. Casazza, and G. Kutyniok, A quantitative notion of redundancy for finite frames, Preprint.
[6] A.M.Bruckstein,D.L.Donoho,andM.Elad,Fromsparsesolutionsofsystemsofequationstosparse modeling of signals and images,
SIAM Review 51 (2009),34–81.
[7] P. G. Casazza and G. Kutyniok, Finite Frames: Theory and Applications, Applied and Numerical Harmonic Analysis, Birkhauser,
New York,2013.
[8] I. Daubechies, Ten lectures on wavelets, CBMS-NSF, SIAM, Philadelphia,1992.
[9] I. Daubechies, A. Grossman, and Y. Meyer, Painless nonorthogonal expansions, J. Math. Phys.27(5), (May, 1986), 1271–1283.
[10] R.J.DuffinandA.C.Schaeffer,Aclassofnonharmonicfourierseries,Trans.Amer.Math.Soc.72, (1952), 341–366.
[11] V.K.Goyal,M.Vetterli,andN.T.Thao,QuantizedovercompleteexpansionsinR
n
:Analysis,synthesis and algorithms, IEEE Trans.
Inform. Th. 44 (1998), 16–31.
[12] B.Hassibi,B.Hochwald,A.Shokrollahi,andW.Sweldens,Representationtheoryforhigh-ratemultiple- antenna code design, IEEE
Trans. Inform. Th. 47, No. 6 (2001), 2355–2367.
[13] B.M.Nzimbi,G.P.Pokhariyal,andS.K.Moindi,Anoteonmetricequivalenceofsomeoperators,Far East J. of Math. Sci. (FJMS) 75,
No.2 (2013),301–318.
[14] S.F.P. Waldron, AnIntroduction to Finite Tight Frames, Birkhauser, New York, 2018.
L. Njagi,B. M. Nzimbi, S.K. Moindi, "A Note on Isomorphy and Unitary Isomorphy of Hilbert Space Frames," International Journal of Mathematics Trends and Technology (IJMTT), vol. 65, no. 1, pp. 15-30, 2019. Crossref, https://doi.org/10.14445/22315373/IJMTT-V65I1P505