Existence of unique integrable solution for a fractional nonlinear Volterra integral equation

  IJMTT-book-cover
 
International Journal of Mathematics Trends and Technology (IJMTT)
 
© 2019 by IJMTT Journal
Volume-65 Issue-5
Year of Publication : 2019
Authors : Faez N. Ghaffoori
  10.14445/22315373/IJMTT-V65I5P522

MLA

MLA Style:Faez N. Ghaffoori "Existence of unique integrable solution for a fractional nonlinear Volterra integral equation" International Journal of Mathematics Trends and Technology 65.5 (2019): 139-142.

APA Style: Faez N. Ghaffoori(2019). Existence of unique integrable solution for a fractional nonlinear Volterra integral equation International Journal of Mathematics Trends and Technology, 139-142.

Abstract
In this paper, the open support of a vertex v under multiplication and open support of a graph G under multiplication is defined and studied. Also, we find the value of open support of some namely graphs like Dutch windmill graph, Butterfly graph and Ladder graph. Moreover, we generalized the value of open support under multiplication for any given graph G.

Reference
[1] Faez N. Ghaffoori " Existence and uniqueness for Volterra nonlinear integral equation" V46 No. 4 June 2017.
[2] M. M. El-Borai, Wagdy G. El-Sayed and Faez N. Ghaffoori, On The Solvability of Nonlinear Integral Functional Equation, (IJMTT) Vo 34, No. 1, June 2016.
[3] M. M. El-borai, W. G. El-sayed, andFaez N. Ghaffoori" Existence Solution For a Fractional Nonlinear Integral Equation of Volterra Type" Aryabhatta Journal of Mathematics & Informatics (AJMI), Vol.08, Iss.02 (July-December, 2016), 1-15.
[4] M. M. A. Metwali, On solutions of quadratic integral equations, Adam Mickiewicz University (2013).
[5] J. Bana's and W. G. El-Sayed, Solvability of functional and Integral Equations in some classes of integrable functions, 1993.
[6] R. R. Van Hassel, Functional Analysis, December 16, (2004).
[7] M. M. A. Metwali, Solvability of functional quadratic integral equations with perturbation, Opercula Math. 33, No. 4 (2013), 725-739.
[8] Ravi P. Agarwal, Maria Meehan and DonalO'regan, Fixed Point Theoryand Applications Cambridge University Press, 2004.
[9] podlubny, Fractional Differential Equations, Academic press, New York, 1999.
[10] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, 2006.

Keywords
Superposition Operator-Nonlinear Fractional Volterra Integral Equation-Banach Fixed Point Theorem- Lipschitz Condition.