Volume 65 | Issue 6 | Year 2019 | Article Id. IJMTT-V65I6P503 | DOI : https://doi.org/10.14445/22315373/IJMTT-V65I6P503
Vandana Agarwal , Monika Malhotra, "An Integral Involving Generalized Multivariable Mittag-Leffler Function," International Journal of Mathematics Trends and Technology (IJMTT), vol. 65, no. 6, pp. 15-20, 2019. Crossref, https://doi.org/10.14445/22315373/IJMTT-V65I6P503
[1] A.A. Kilbas, M. Siago and R.K. Saxena, Generalized Mittag-Leffler function and generalized fractional calculus operators,Integral Transforms Spec. Funct. , Vol. 15, (2004), pp. 31-49.
[2] M.K. Gujar, J.C. Prajapati and K. Gupta, A study of generalized Mittag Leffler function via Fractional Calculus, Journal of Inequalities and Special Functions, 5, No. (2014), 6-13.
[3] G. M. Mittag-Leffler, Sur la nouvelle function Eα(x), C. R. Acad. Sci. Paris No 137 (1903), 554-558.
[4] T. R. Prabhakar,A singular integral equation with a generalized Mittag-Leffler function in the Kernel, Yokohama Math. J. No 19 (1971) 7-15. MR0293349 (45#2426).Zbl 0221.45003.
[5] T.O. Salim and A.W. Faraj, A generalization of Mittag-Leffler function and integral operator associated with fractional calculus, J. of Fract. Calc. and Appl., 3 (2012), 1-13.
[6] A.K. Shukla and J.C. Prajapati,On a generalization of Mittag-Leffler function and its properties, Math. Anal. Appl., 336 (2007), 797-811.
[7] H.M. Srivastava, A Contour inyegral involving Fox’s H-function, Indian J.Math. 14(1972), 1-6.
[8] H.M. Srivastava and H.L. Manocha, A Treatise on Generating Functions, Elli’s Horwood Ltd. Chichester, John Wileyand Sons,New York 1984.
[9] G. Szego,Orthogonal polynomials, Amer. Math. Soc. Colloq. Publ. Vol. 23 (1975), Fourth edition, Amer. Math. Soc.Providence, Rhode Island.
[10] A. Wiman, Uber de fundamental satz in der theorie der funktionen Eα(x), Acta Math. No. 29 (1905), 191-201.MR1555014.JFM36.0471.01