Volume 65 | Issue 6 | Year 2019 | Article Id. IJMTT-V65I6P517 | DOI : https://doi.org/10.14445/22315373/IJMTT-V65I6P517
Opara Jude, Oruh Ben Ifeanyichukwu, Ihekuna Stephen, O., Okenwe Idochi, "A New And Efficient Proposed Approach For Optimizing The Initial Basic Feasible Solution Of A Linear Transportation Problem," International Journal of Mathematics Trends and Technology (IJMTT), vol. 65, no. 6, pp. 104-118, 2019. Crossref, https://doi.org/10.14445/22315373/IJMTT-V65I6P517
[1] Abul, K. A., and Mosharraf, H. (2018). An Innovative Algorithmic Approach for Solving Profit Maximization Problems. Mathematics Letters. Vol. 4, No. 1, 2018, pp. 1-5. doi: 10.11648/j.ml. 20180401.11
[2] Amaravathy, A., Thiagarajan, K. and Vimala, S. (2018). Optimal Solution of OFSTF, MDMA Methods with Existing Methods Comparison. International Journal of Pure and Applied Mathematics. Volume 119 No. 10 2018, 989-1000.
[3] Deshabrata, R. M., Sankar, K. R., Mahendra, P.B. (2013). Multi-choice stochastic transportation problem involving extreme value distribution. 37(4).
[4] Gurupada, M., Sankar, K. R., and José, L. V. (2016). Multi-Objective Transportation Problem With Cost Reliability Under Uncertain Environment. International Journal of Computational Intelligence Systems, 9(5).
[5] Hakim, M.A. (2012). An Alternative Method to Find Initial Basic Feasible Solution of a Transportation Problem, Annals of Pure and Applied Mathematics, Vol. 1, No. 2, 2012, 203-209.
[6] Opara, J., Oruh, B. I., Iheagwara, A. I., and Esemokumo, P. A. (2017). A New and Efficient Proposed Approach to Find Initial Basic Feasible Solution of a Transportation Problem. American Journal of Applied Mathematics and Statistics, 2017, Vol. 5, No. 2.
[7] Roy, S.K. (2016). Transportation Problem with Multi-choice Cost and Demand and Stochastic Supply J. Operations Research of China (2016) 4(2), 193-204, DOI 10.1007/s40305-016-0125-3
[8] Roy, S.K., Maity, G. & Weber, G.W. (2017). Multi-objective two-stage grey transportation problem using utility function with goals Cent Eur. J. Oper. Res. (2017) 25: 417.
[9] Sankar, K.R., Gurupada, M., Gerhard, W.W., Sirma, Z.A.G. (2016). Conic Scalarization Approach to solve Multi-choice Multi-objective Transportation Problem with interval goal. Annals of Operations Research · August 2016 DOI: 10.1007/s10479-016-2283-4.
[10] Sudipta, M. & Sankar, K. R. (2014). Solving Single-Sink, Fixed-Charge, Multi-Objective, Multi-Index Stochastic Transportation Problem. American Journal of Mathematical and Management Sciences. 33(4).