Volume 65 | Issue 7 | Year 2019 | Article Id. IJMTT-V65I7P533 | DOI : https://doi.org/10.14445/22315373/IJMTT-V65I7P533
P.Karthiksankar, "Quasi Dine sg-Open and Quasi Dine g-Closed Functions in Dine Topological Spaces," International Journal of Mathematics Trends and Technology (IJMTT), vol. 65, no. 7, pp. 282-285, 2019. Crossref, https://doi.org/10.14445/22315373/IJMTT-V65I7P533
[1] D.Andrijevic, “Semi – pre open sets”, Mat.Vesnik, 38(1), 24 – 32 (1986).
[2] P. Bhattacharyya, and B. K. Lahiri, Semi Generalized Closed Sets in Topology, Indian J.Pure Appl.Math., Vol. 29, Pp. 375-382 (1987).
[3] S.Chandrasekar,M.Suresh,T.Rajesh kannan Nano sg-interior and Nano sg-closure in nano topological spaces. International Journal. Mathematical Archive, 8(4), 94-100 (2017).
[4] S.Chandrasekar, A Atkinswestly, M ,Sathyabama, g#b-closed sets in Topological paces. International Journal of Advanced Research (IJAR) 5(7) , 2722-2730
[5] S Chandrasekar, M Sathyabama, A Atkinswestley g# b-Interior and g #b-Closure in Topological Spaces. International Journal of Mathematics and its Applications,552(B)7(2017).
[6] S.Chandrasekar, M.Suresh and T.Rajesh Kannan,On Quasi Soft sg-open and Quasi Soft sg-closed Functions in Soft Topological Spaces. International Journal of Mathematics and its Applications (239-246), Volume 5, Issue 2–B, 239–246 (2017).
[7] S.Chandrasekar, T Rajesh Kannan, M Suresh,,δωα-Closed Sets in Topological Spaces,Global Journal of Mathematical Sciences: Theory and Practical.9 (2), 103-116(2017).
[8] S.Chandrasekar,T Rajesh Kannan,R.Selvaraj δωα closed functions and δωα Closed Functions in Topological Spaces, International Journal of Mathematical Archive 8 (11) (2017).
[9] N.Levine, Generalized closed sets in Topological Spaces, Rend. Circ. Mat. Palermo, Vol 19, Pp.89-96 (1970).
[10] P.L. Powar and Pratibha Dubey A Concise form of Continuity in Fine Topological Space Advances in Computational Sciences and Technology Vol. 10, N. 6, pp.1785-1805 (2017),
[11] P.L. Powar and K. Rajak, Fine irresolute mapping, Journal of Advanced Studied in Topology, 3(4) 125–139 (2012).
[12] O.Ravi, S. Ganesan and S. Chandrasekar On Totally sg-Continuity, Strongly sg- Continuity and Contra sg-Continuity Genral Mathematical notes. Notes, Vol.7,No 1, pp.13-24 Nov (2011).