Volume 65 | Issue 7 | Year 2019 | Article Id. IJMTT-V65I7P541 | DOI : https://doi.org/10.14445/22315373/IJMTT-V65I7P541
In this paper, we obtain the expansions of tan(x) and cot(x) by taking logarithmic derivative of the infinite products for cos(x) and sin(x) respectively. Applying trigonometric identities, series rearrangement technique (for unilateral and bilateral infinite series) and suitable substitutions, we obtain the expansions of cosec(x) and sec(x). We also obtain the expansions, hypergeometric forms, convergence conditions and explicit formulas for m-th derivatives of tan(ax+b), cot(ax+b), cosec(ax+b), sec(ax+b) and related hyperbolic functions.
[1] Adegoke, K. and Layeni O.; The higher derivatives of the inverse tangent function and rapidly convergent BBP-type formulas for pi, Appl. Math. E-Notes 10 (2010), 70–75.
[2] Boyadzhiev, K. N.; Derivative polynomials for tanh, tan, sech and sec in explicit form, Fibonacci Quart. 45 (4) (2007), 291–303.
[3] Daboul, S., Mangaldan, J., Spivey, M. Z. and Taylor, P. J.; The Lah numbers and the nth derivative of e 1x , Math. Mag. 86(1) ( 2013), 39–47.
[4] Hobson, E. W.; A treatise on plane trigonometry, Cambridge University Press, Fourth Edition, 1918.
[5] Hobson, E. W.; A treatise on plane and advanced trigonometry, Seventh Edition, Dover Publication Inc. Mineola, New York, 1928.
[6] Hoffman, M. E.; Derivative polynomials for tangent and secant, Amer. Math. Monthly 102 (1) (1995), 23–30. 14
[7] Lampret, V.; The higher derivatives of the inverse tangent function revisited, Appl. Math. E-Notes 11 (2011), 224–231.
[8] Loney, S. L.; Analytical trigonometry, second part, Cambridge University Press, 1893.
[9] Loney, S. L.; Analytical trigonometry, second part, Cambridge University Press, 1952.
[10] Ma, S. M.; A family of two-variable derivative polynomials for tangent and secant, Electron. J. Combin. 20 (1) (2013), #P11, 1-12.
[11] Ma, S. M.; On vectors and the derivatives of the tangent and secant functions, Bull. Aust. Math. Soc. 90 (2) (2014), 177–185.
[12] Qi, F.; Explicit formulas for the n-th derivatives of the tangent and cotangent functions, available online at http: //arxiv.org/abs/1202.1205v1.
[13] Qi, F.; Explicit formulas for derivatives of tangent and cotangent and for Bernoulli and other numbers, arXiv preprint; Available online at http://arxiv.org/abs/1202.1205v2.
[14] Qi, F.; Derivatives of tangent function and tangent numbers, Applied Mathematics and Computation 268 (2015), 844-858.
[15] Qureshi, M. I., Khan, I. H. and Chaudhary, M. P.; Hypergeometric forms of well known partial fraction expansions of some meromorphic functions, Global Journal of Science Frontier Research, 11 (6) (2011), 45-52.
[16] Qureshi, M. I., Quraishi, K. A. and Srivastava, H. M.; Some hypergeometric summation formulas and series identities associated with exponential and trigonometric functions, Integral Transforms and Special Functions(Taylor and Francis Group), 19 (4) (2008), 267-276.
[17] Srivastava, H. M. and Manocha, H. L.; A treatise on generating functions, Halsted Press (Ellis Horwood Limited, Chichester, U.K.) John Wiley and Sons, New York, Chichester, Brisbane and Toronto, 1984.
M. I. Qureshi, Saurabh Porwal, Dilshad Ahamad, Kaleem A. Quraishi, "Successive differentiations of tangent, cotangent, secant, cosecant functions and related hyperbolic functions (A hypergeometric approach)," International Journal of Mathematics Trends and Technology (IJMTT), vol. 65, no. 7, pp. 354-367, 2019. Crossref, https://doi.org/10.14445/22315373/IJMTT-V65I7P541