Volume 65 | Issue 8 | Year 2019 | Article Id. IJMTT-V65I8P509 | DOI : https://doi.org/10.14445/22315373/IJMTT-V65I8P509
In this paper we have proved that the index of cordiality for Kn is atmost 4, when n can be expressed as sum of square of two integers and also it is atmost 4 for different conditions of di, where di = ef (1) - ef (0) for some binary vertex labelingfunction f on Kn.
[1] I. Cahit, Cordial graphs: A weaker version of graceful and harmonious graphs, Ars Combin, 23 (1987), pp 201 - 207. http://www.academia.edu/850965
[2] I. Cahit, On cordial and 3-equitable labeling of graphs, Utilitas Math., 37 (1990), pp 189 - 198.
[3] J. A. Gallian, A dynamic survey on graph labeling, The Electronics Journal of Com- binatorics, 17(2014), #DS6.
[4] F. Harary, Graph theory Addition Wesley, MA, 1969.
[5] V. J. Kaneria, H. M. Makadia and M. M. Jariya, Graceful labeling for cycle of graphs, Int. J. of Math. Res., vol-6(2), (2014), pp. 173-178. http://irphouse.com/volume/ ijmrv6n2.htm
[6] V. J. Kaneria and S. K. Vaidya, Index of cordiality for complete graphs and cy- cle, IJAMC, Vol.-2(4) (2010), pp 38 - 46. http://www.darbose.in/ojs/index.php/ ijamc/article/view/2:4:5
[7] S. K. Vaidya, S. Srivastav, V. J. Kaneria and G. V. Ghodasara, Cordial labeling for two cycle related graphs, The Math. Student J. of Indian Math. Soc., 76 (2007), pp 237 - 246.
[8] S. K. Vaidya, S. Srivastav, V. J. Kaneria and G. V. Ghodasara, Cordial and 3-equitable labeling of star of a cycle, Mathematics Today, 24 (2008), pp 54 - 64.
M M Jariya, "Index of labeling," International Journal of Mathematics Trends and Technology (IJMTT), vol. 65, no. 8, pp. 87-96, 2019. Crossref, https://doi.org/10.14445/22315373/IJMTT-V65I8P509