Volume 65 | Issue 9 | Year 2019 | Article Id. IJMTT-V65I9P510 | DOI : https://doi.org/10.14445/22315373/IJMTT-V65I9P510
We shall study the existence and uniqueness and regularity of solutions for Cauchy problems associated with the following two equations:๐ฃ๐ก = โ๐ ๐๐ฃ , ๐ฃ๐ก๐ก = โ๐ ๐ ๐ฃ; and the elliptic type equation โ๐ ๐๐ฃ = f(k>1). We applications of the Fourier-Wienertransform defined on a class of polynomial cylinder functions on Hilbert space and Wiener space.
[1] YUH-JIA LEE, Applications of the Fourier-wiener Transform to Differential equations on Infinite Dimensional spaces. I, Volume 262, Number 1, November 1980.
[2] _, Potential theory on Hilbert space, J. Functional Analysis 1 (1967), 123-181.
[3] _, Abstract Wiener spaces, Proc. Fifth Berkeley Sympos. Math. Stat. and Prob. (Berkeley, Calif., 1965/66), Vol. II: Contributions to Probability Theory, Part I, Univ. California Press, Berkeley, Calif., 1967, pp. 31-42.
[4] M. A. Piech, A fundamental solution of the parabolic equation on Hilbert space, J. Functional Analysis 3 (1969), 85- 114.
[5] R. H. Cameron and W. T. Martin, Fourier-Wiener transforms of analytic functionals, Duke Math. J. 12 (1945), 489-507.
[6] E. Hille, Functional analysis and semi-groups, Amer. Math. Soc. Colloq. Publ., vol. 31, Amer. Math. Soc., Providence, R. I., 1948.
[7] YUH-JIA LEE, Integral Transforms of Analytic Functions on Abstract Wiener Spaces, Journal Of Functional Analysis 47, 153- 164 (1982).
[8] R. H. Cameron And W. T. Martin, Fourier-Wiener transforms of analytic functionals, Duke Math. J. 12 (1945), 489-507.
[9] R. H. CAMERON AND W. T. MARTIN, Fourier-Wiener transforms of functionals belonging to L2 over the space E, Duke Math. J. 14 (1946), 99-107.
[10] Y. J. LEE, Applications of the Fourier-Wiener transform to differential equations on infinite dimensional spaces, I, Trans. Amer. Math. Soc. 262 (1980), 259-283.
[11] E. SEGAL, Tensor algebra over Hilbert space, I, Trans. Amer. Math. Soc. 81 (1956) 106-134.
[12] Y. J. LEE, Applications of the Fourier-Wiener transform to differential equations on infinite dimensional spaces, II, J. Differential Equations 41 (1981), 59-86.
[13] R. H. CAMERON AND D. A. STORVICK, An ๐ฟ2 analytic Fourier-Feynman transform, Michigan Math. J. 23 (1976), l-30.
[14] L. GROSS, Abstract Wiener spaces, in โProc. Fifth Berkeley Sympos. Math. Statist. Probab.โ 2 (1965), 31-42.
[15] H.-H. KUO, โGaussian Measures in Banach Spaces,โ Lecture Notes in Mathematics No. 463, Springer-Verlag, Berlin/New York,
1975.
[16] M. A. PIECH, The Ornstein-Uhlenbeck semi-group in an infinite dimensional ๐ฟ2 setting, J. Funct. Anal. 18 (1975), 271-285.
[17] L. GROSS, Potential theory on Hilbert space, J. Funct. Anal. 1 (1967), 123-181.
[18] H.-H. KUo, Integration by parts for abstract Wiener measures, Duke Math. J. 41 (1974), 373-379.
Dr. Halema Zakaria Yahia Hussein, "Applications of the Fourier-Wiener and Integral Transforms," International Journal of Mathematics Trends and Technology (IJMTT), vol. 65, no. 9, pp. 64-67, 2019. Crossref, https://doi.org/10.14445/22315373/IJMTT-V65I9P510