Volume 65 | Issue 9 | Year 2019 | Article Id. IJMTT-V65I9P514 | DOI : https://doi.org/10.14445/22315373/IJMTT-V65I9P514
The purpose of this paper is to obtain common fixed point theorem in chainable intuitionistic fuzzy metric space using the concept of occasionally weak compatibility for six self-maps and generalizes the result of Manroet. al[12].
[1] Zadeh, L. A., Fuzzy sets, Inform and control 89 (1965), 338-353.
[2] Atanassov, K., Intuitionistic fuzzy sets, Fuzzy Sets and System 20 (1986), 87-96.
[3] Park, J.H., Intuitionistic fuzzy metric spaces, Chaos, Solitions & Fractals 22 (2004), 1039-1046.
[4] Alaca, C., Turkoglu, D. and Yildiz, C., Fixed points in Intuitionistic fuzzy metric spaces, Smallerit Chaos, Solitons & Fractals 29 (5), (2006), 1073 –1078.
[5] Turkoglu, D., Alaca, C., Cho, Y.J. and Yildiz, C., Common fixed point theorems in intuitionistic fuzzy metric spaces, J. Appl . Math. and Computing, 22 (2006), 411-424.
[6] Jungck, G., Commuting mappings and fixed points, Amer. Math. Monthly 83(1976), 261-263.
[7] Pant, R. P., Common fixed points of non-commuting maps, J. Math. and Appl. 188 (1994), 436-440.
[8] Alaca, C., Altun, I. and Turkoglu, D., On compatible mappings of type (I) and type(II) in intuitionistic fuzzy metric spaces, Commun. Korean Math. Soc. 23 (3), (2008),427-446.
[9] Alaca, C., Turkoglu, D. and Yildiz, C., Common fixed points of compatible maps in intuitionistic fuzzy metric spaces, Southea st Asian Bulletin of Mathematics, 32 (2008), 21-33.
[10] Park, J.S., Common fixed point theorem of semi-compatible maps on intuitionistic fuzzy metric space, Commu. Korean Math. Soc. 25 (2010), No.1, pp. 59-68.
[11] Kumar, S. and Vats, R.K., Common fixed points for weakly compatible maps in intuitionistic fuzzy metric spaces, Journal of Advanced Studies in Topology 1 (2010), 50-53.
[12] Manro, S., Kumar, S. and Singh, S., Common fixed point theorem in intuitionistic fuzzy metric spaces, Applied Mathematics 2010(1), 510-514.
[13] Jungck, G. and Rhoades, B.E., Fixed points for set valued functions without continuity, Indian J. Pure Appl. Math. 29 (1998), 227- 238.
[14] Al-Thagafi, MA, Shahzad, N., Generalized I-nonexpansive self-maps and invariant approximations, Acta Math. Sci. 24 (2008), 867- 876.
Swati Agnihotri, K. K. Dubey, V. K. Gupta, "Common Fixed Point Theorem in Intuitionistic Fuzzy Metric Space," International Journal of Mathematics Trends and Technology (IJMTT), vol. 65, no. 9, pp. 94-103, 2019. Crossref, https://doi.org/10.14445/22315373/IJMTT-V65I9P514