Volume 66 | Issue 10 | Year 2020 | Article Id. IJMTT-V66I10P505 | DOI : https://doi.org/10.14445/22315373/IJMTT-V66I10P505
The purpose of the present paper is to study some properties of LP-Sasakian manifold with respect to quarter symmetric non metric ξ - connection. Also, we study Conharmonically flat, ξ - Conharmonically flat and quasi conharmonically flat LP-Sasakian manifolds with respect to quarter symmetric non metric ξ - connection. Moreover, we study Ricci soliton on LP-Sasakian manifold with respect to Quarter symmetric non metric ξ - connection.
[1] S.K. Chaubey and R.H. Ojha., On semi-symmetric non-metric and quarter-symmetric met- ric connections. Tensor N. S. 70 (2008), no.(2), 202-213.
[2] S.K. Chaubey and U.C. De., Lorentzian para-sasakian manifolds admitting a new type of Quarter Symmetric non metric ξ-connection ,International Electronic Journal of Geometry Vol 12, No-2 (2019), 250-259.
[3] Krishnendu De and U.C. De., Conharmonic curvature tensor on Kenmotsu manifolds ,Bul- letin of the Transilvania University of Brasov Vol 6(55), No. 1 - 2013, Series-III, pg 9-22.
[4] S.A Demirbag, H.B. Yilmaz, S.A. Uysal and F.O. Zengin., On quasi Einstein manifolds admitting a Ricci quarter-symmetric metric connection. Bull. of Math. Anal. and Appl. 3 (2011), no. 4, 84-91.
[5] M.K. Dwivedi and Kim Jeong-Sik., On Conharmonic Curvature Tensor in K-contact and Sasakian Manifolds, Bull. Malays. Math. Sci. Soc. (2)34(1) (2011), 171-180.
[6] S. Golab., On semi symmetric and quarter symmetric linear connections. Tensor N.S.29(1975), 249-254.
[7] R.S. Hamilton.,The Ricci Flow on surfaces ,Math.and General Relativity(Santa Cruz,CA,1986), American Math.Soc.Contemp.math.71(1988), 232-262.
[8] Y. Ishii., Conharmonic transformations, Tensor (N.S.) 7(1957), 73-80.
[9] K. Matsumoto., On Lorentzian paracontact manifolds, Bull. of Yamagata Univ.Nat. Sci.12 (1989), 151-156.
[10] I. Mihai and R. Rosca., On Lorentzian P-Sasakian manifolds, Classical Analysis, World Scientic Publi. (1992), 155-169.
[11] H.G. Nagaraja and C.R. Premalatha., Ricci solitons in Kenmotsu manifolds, J. of Mathemati-cal Analysis.3(2) (2012) 18-24.
[12] V.V. Reddy, R. Sharma and S. Sivaramkrishan., Space times through Hawking-Ellis constru-ction with a back ground Riemannian metric, Class Quant. Grav. 24 (2007) 3339- 3345.
[13] R. Sharma., Certain results on K-contact and (k,µ)-contact manifolds, J. of Geometry.89 (2008), 138-147.
[14] S.A. Siddiqui and Z. Ashan., Conharmonic curvature tensor and space time of General relativity,Differential Geometry - Dynamical Systems, Vol.12, 2010, pp. 213-220.
[15] S. Sular., C. Ozgur and U.C. De., Quarter-symmetric metric connection in a Kenmotsu manifold. SUT Journal of Mathematics 44 (2008), 297-306.
[16] M.M. Tripathi., Ricci solitons in contact metric manifold, ArXiv: 0801. 4222vl [math. D. G.], 2008.
Abhijit Mandal, Iltutmiss Nayer, Manjurul Sarkar, "SOME CURVATURE PROPERTIES OF LP-SASAKIAN MANIFOLD WITH RESPECT TO QUARTER SYMMETRIC NON METRIC ξ-CONNECTION," International Journal of Mathematics Trends and Technology (IJMTT), vol. 66, no. 10, pp. 24-32, 2020. Crossref, https://doi.org/10.14445/22315373/IJMTT-V66I10P505