Volume 66 | Issue 10 | Year 2020 | Article Id. IJMTT-V66I10P506 | DOI : https://doi.org/10.14445/22315373/IJMTT-V66I10P506
Hemant Kumar Mishra, Govind Kumar Jha, "Radiation Pressure and its effect on the Halo orbits of Venus-Sun and Satellite system," International Journal of Mathematics Trends and Technology (IJMTT), vol. 66, no. 10, pp. 33-45, 2020. Crossref, https://doi.org/10.14445/22315373/IJMTT-V66I10P506
[1] Kulkarni, T. R., and Mortari, D., “Low energy interplanetary transfers using halo orbit hopping method with STK/Astrogator,” Advances in the Astronautical Sciences, Vol. 120, 2005, pp. 155–168.
[2] Lo, M. W., “Libration point trajectory design.” Numerical Algorithms, Vol. 14, 1997, pp. 153–164. doi:10.1023/A: 1019108929089.
[3] Koon, W. S., Lo, M. W., Marsden, J. E., and Ross, S. D., “Low Energy Transfer to the Moon,” Celestial Mechanics and Dynamical Astronomy, Vol. 81, 2001, pp. 63–73.
[4] Koon, W., Lo, M., and Marsden, J., Dynamical Systems: The Three-body Problem and Space Mission Design, Interdisciplinary Applied Mathematics, Springer-Verlag New York Incorporated, 2011.
[5] Gomez, G., Jorba, A., Masdemont, J., and Simo, C., “Study of the transfer from the Earth to a halo orbit around the equilibrium point L1,” Celestial Mechanics and Dynamical Astronomy, Vol. 56, 1993, pp. 541–562. doi:10.1007/BF00696185.
[6] Jorba, À., and Masdemont, J., “Dynamics in the center manifold of the collinear points of the restricted three body problem,” Physica D Nonlinear Phenomena, Vol. 132, 1999, pp. 189–213. doi:10.1016/S0167-2789(99)00042-1.
[7] Romagnoli, D., and Circi, C., “Lissajous trajectories for lunar global positioning and communication systems,” Celestial Mechanics and Dynamical Astronomy, Vol. 107, 2010, pp. 409–425. doi:10.1007/s10569-010-9279-1.
[8] Eapen, R. T., and Sharma, R. K., “Mars interplanetary trajectory design via Lagrangian points,” Astrophysics and Space science, Vol. 353, No. 1, 2014, pp. 65–71.
[9] Burns, J. A., Lamy, P. L., and Soter, S., “Radiation forces on small particles in the solar system,” Icarus, Vol. 40, No. 1, 1979, pp. 1–48.
[10] McCuskey, S. W., “Introduction to celestial mechanics.” Reading, Mass., Addison-Wesley Pub. Co.[1963], 1963.
[11] Sharma, R. K., “The linear stability of libration points of the photogravitational restricted three-body problem when the smaller primary is an oblate spheroid,” Astrophysics and Space Science, Vol. 135, No. 2, 1987, pp. 271–281.
[12] Verhulst, F., Nonlinear differential equations and dynamical systems, Springer Science & Business Media, 2006.
[13] Richardson, D. L., “Analytic construction of periodic orbits about the collinear points,” Celestial Mechanics, Vol. 22, 1980, pp. 241–253. doi:10.1007/BF01229511.
[14] Tiwary, R. D., and Kushvah, B. S., “Computation of halo orbits in the photogravitational Sun-Earth system with oblateness,” Astrophysics and Space Science, Vol. 357, No. 1, 2015, p. 73.
[15] Mishra, H. K., and Jha, G. K., “Frequency analysis of Halo orbits in the Sun-Mercury System,” Manuscript submitted for publication, 2019.
[16] Thurman, R., and Worfolk, P. A., “The geometry of halo orbits in the circular restricted three-body problem,” University of Minnesota: Geometry Center Research Report GCG95, 1996.