Volume 66 | Issue 10 | Year 2020 | Article Id. IJMTT-V66I10P509 | DOI : https://doi.org/10.14445/22315373/IJMTT-V66I10P509
The main aim of this paper is to develop the study of semihyperrings in real algebra. By introducing the notions of semireal semihyperrings, preorderings and orderings on semihyperrings, we discuss the interplay between them. For the 0-regular semihyperrings, we establish analogous Artin-Schreier theory.
[1] Z. Ao, P. Chen and H.Song, “The orders of semirings and semireal semirings”, J. Jiangxi Normal Univ.,32(2),186 − 188, 2007.
[2] B. Davvaz, A.Salasi, “A realization of hyperrings”, Comm. In Algebra,34(12),4389 − 4400, 2006.
[3] D. Huang, “Orderings and Preorderings on Modules”, J. of Math. and Comp. Sci.,4(3),574 − 586, 2014.
[4] E. Artin, Uber die Zerlegung definiter Funktionen in Quadrate, Abh. Math. Sem. Univ. Hamburg,5,100 − 115, 1927.
[5] E. Artin and O. Schreier, Algebraische Konstruktion reeller Korper, Abh. Math. Sem. Univ. Hamburg,5,85 − 99, 1927.
[6] E. Artin and O. Schreier, Eine Kennzelchnung der reell algeschlossennen Korper, Abh. Math. Sem. Univ. Hamburg,5,225 − 231, 1927.
[7] G. Zeng, On formally real modules, Comm. in Algebra,27(12),5847 − 5856, 1999.
[8] F. Marty, Sur une generalization de la notion de groupe, 8th Congress Math. Scandenaves, Scandenaves, Stockholm,45 − 49, 1934.
[9] M. Krasner, Approximation des Corps Values Complets de Charactristlque p 6= 0 parceux de Characteristique 0, Colloque d’Algebre Superleure, Bruxelles,1956 .
[10] M. Krasner, A class of hyperrings and hyperfields, Int. J. Math and Math. Sci.,2,307 − 312,1983.
[11] M. Marshall, Real reduced multirings and multifields, J. of Pure and Appl. Algebra,205,452 − 468,2006.
[12] J. Jun, Algebraic geometry over hyperrings. Advances in Math.,323,142−192, 2018.
[13] R. Ameri and H. Hedayati,On k-hyperideals of semihyperrings. J. of Disc. Math. Sci.and Cry.,10(1),41 − 54, 2007.
[14] R. Nadesan, Commutative Hyperalgebra. University of Cincinnati, 2013.
[15] T. Craven, Orderings on semirings, Semigroup Forum,43,45 − 52, 1991.
[16] T.Y.Lam, An introduction to real algebra, Rocky Mountain J. of Math..14(4) :767 − 814, 1984.
[17] Z. Z. Dai, Introduction to Real Algebra. Jiangxi University Press, NanChang, 1999.
Dongming Huang, Xin Wang, Jinping Li, "Orderings and Preorderings on Semihyperrings," International Journal of Mathematics Trends and Technology (IJMTT), vol. 66, no. 10, pp. 58-62, 2020. Crossref, https://doi.org/10.14445/22315373/IJMTT-V66I10P509