Volume 66 | Issue 10 | Year 2020 | Article Id. IJMTT-V66I10P513 | DOI : https://doi.org/10.14445/22315373/IJMTT-V66I10P513
Irda Melina Zet, Sri Gemawati, Kartini Kartini, "Relation between Lah matrix and k-Fibonacci Matrix," International Journal of Mathematics Trends and Technology (IJMTT), vol. 66, no. 10, pp. 116-122, 2020. Crossref, https://doi.org/10.14445/22315373/IJMTT-V66I10P513
[1] J. Engbers, D. Galvin, and C. Smyth, Restricted Stirling and Lah number matrices and their inverses, Journal of Combinatorial Theory Series A, 161 (2017), 1-26.
[2] S. Falcon, The k-Fibonacci matrix and the Pascal matrix, Central European Journal of Mathematics, 9 (6), 2011, 1403โ1410.
[3] S. Falcon and A. Plaza, k-Fibonacci sequences modulo m, Chaos Solitons & Fractals, 41 (2009), 497-504.
[4] S. Falcon and A. Plaza, On the Fibonacci k-numbers, Chaos Solitons & Fractals, 32 (2007), 1615-1624.
[5] B. Guo and F. Qi, Six Proofs for an Identity of the Lah Numbers, Online Journal of Analytic Combinatorics, 10 (2015), 1-5.
[6] V. E. Hoggat, Fibonacci and Lucas Numbers, HoughtonโMifflin, Palo Alto, CA., 1969.
[7] T. Koshy, Fibonacci and Lucas Numbers with Applications, Wiley Interscience, New York, 2001.
[8] G. Y. Lee and J. S. Kim, The linear algebra of the k-Fibonacci matrix, Linear Algebra and its Applications, Elsevier, 373 (2003), 75โ 87.
[9] I. Martinjak, Lah Number and Lindstromโs Lemma, Comptes Rendus Mathematique, 356(2017), 1-4.
[10] Mawaddaturrohmah and S. Gemawati, Relationship of Bellโs Polynomial Matrix and k-Fibonacci Matrix, American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS), 65(2020), 29-38.
[11] R. Munir, Metode Numerik, Informatika : Bandung, 2008.
[12] G. P. S. Rathore, A. A Wani, and K. Sisodiya, Matrix Representation of Generalized k-Fibonacci Sequence, OSR Journal of Mathematics, 12 (2016), 67โ72.
[13] T. Wahyuni, S. Gemawati, and Syamsudhuha, On some Identities of k-Fibonacci Sequences Modulo Ring z6 and z10, Applied Mathematical Sciences, 12(2018), 441-448.