Volume 66 | Issue 10 | Year 2020 | Article Id. IJMTT-V66I10P514 | DOI : https://doi.org/10.14445/22315373/IJMTT-V66I10P514
The Zagreb indices and K-Banhatti indices are closely related. In this paper, we introduce the reformulated harmonic index, harmonic Zagreb-K-Banhatti index of a graph. We establish some bounds for the harmonic index and reformulated harmonic index. We also obtain lower and upper bounds for the harmonic Zagreb-K-Banhatti index of a graph in terms of Zagreb and K-Banhatti indices.
[1] V.R.Kulli, College Graph Theory, Vishwa International Publications, Gulbarga, India (2012).
[2] V.R.Kulli, Graph indices, in Hand Book of Research on Advanced Applications of Application Graph Theory in Modern Society, M. Pal. S. Samanta and A. Pal, (eds) IGI Global, USA (2020) 66-91.
[3] I. Gutman and O.E. Polansky, Mathematical Concepts in Organic Chemistry, Springer, Berlin (1986).
[4] V.R.Kulli, Multiplicative Connectivity Indices of Nanostructures, LAP LEMBERT Academic Publishing, (2018).
[5] R. Todeschini and V. Consonni, Molecular Descriptors for Chemoinformatics, Wiley-VCH, Weinheim, (2009).
[6] I. Gutman and N. Trinajstić, Graph theory and molecular orbitals. Total -electron energy of alternant hydrocarbons, Chem. Phys. Lett. 17, (1972) 535-538.
[7] S. Nikolić, G. Kovaćević, A. Milićević and N. Trinajstić, The Zagreb indices 30 years after, Croatica Chemica Acta CCACAA 76(2), (2003) 113-124.
[8] K.C. Das, I. Gutman and B. Zhou, New upper bounds on Zagreb indices, J. Math. Chem. 46, 514-521 (2009).
[9] I. Gutman, b. Furtula, Z. Kovijanić Vukičević and G. Popivoda, Zagreb indices and coindices, MATCH Commun. Math. Comput. Chem. 74 (2015) 5-16.
[10] S. Fajtlowicz, On conjectures of Graffiti-II, Congr. Numer 60 (1987) 187-197.
[11] O. Favaron, M. Mahéo and J.F.Saclé, Some eighen value properties in graphs (conjectures of Graffiti II) Discrete Math., 111(1-3), (1993) 197- 220.
[12] L.Zhong, The harmonic index for graphs, Appl. Math. Lett., 25(3) (2012) 561-566.
[13] I. Ilic, Note on the harmonic index of a graph Ars. Comb. 128 (2016) 295-299.
[14] J. M. Rodriguez and J. M. Sigarreta, The harmonic index, in: Bounds in Chemical Graph Theory-basics, I Gutman, B. Furtula, K.C. Das, E. Milovanović and I. Milovanović (eds.) Mathematical Chemistry Monographs-MCM 19, Univ Kraguevac, Kragujevac (2017) 229-281.
[15] X. Xu, Relations between harmonic index and other topological indices, Appl. Math. Sci. 6(2012) 2013-2018.
[16] L. Zhong and K. Xu, Inequalities between vertex degree based topological indices, MATCH Commun. Math. Comput. Chem. 71 (2014) 627- 642.
[17] A. Milićević, S. Nikolić and N. Trinajstić, On reformulated Zagreb indices, Molecular Diversity, 8, (2004) 393-399.
[18] N. De, Some bounds of reformulated Zagreb indices, Appl. Mathematical Sciences, 6(101), (2012) 5005-5012.
[19] A. Ilić and B. Zhou, On reformulated Zagreb indices, Discrete Appl. Math. 160 (2012) 204-209.
[20] V.R.Kulli, F-index and reformulated Zagreb index of certain nanostructures, International Research Journal of Pure Algebra, 7(1) (2017) 489-495.
[21] T. Mansour, M.A. Rostami, E. Suresh and G.B.A. Xavier, On the bounds of the first reformulated Zagreb index, Turkish Journal of Analysis and Number Theory, 4(1) (2016) 8-15.
[22] V.R.Kulli, On K Banhatti indices of graphs, Journal of Computer and Mathematical Sciences, 7(2016) 213-218.
[23] A. Asghar, M. Rafaqat, W. Nazeer and W. Gao, K Banhatti and K hyper Banhatti indices of circulext graphs, Internatonal Journal of Advanced and Applied Sciences, 5(5) (2018) 107-109.
[24] F. Dayan. M. Javaid, M. Zulqarnain, M.T. Ali and B. Ahmad, Computing Banhatti indices of hexagonal, honeycomb and derived graphs, American Journal of Mathematical and Computer Modelling, 3(2) (2018) 38-45.
[25] W. Gao, B. Muzaffer and W. Nazeer, K Banhatti and K hyper Banhatti indices of dominating David derived network, Open J. Math. Anal. 1(1) (2019) 13-24.
[26] V.R.Kulli, Computing Banhatti indices of networks, International Journal of Advances in Mathematics, 2018(1) 2018) 31-40.
[27] V.R.Kulli, K Banhatti indices of chloroquine and hydroxychloroquine : Research Applied for the treatment and prevention of COVID-19,
[28] V.R.Kulli, K Banhatti polynomials of remdesivir, chloroquine and hydroxychloroquine: Research Advances for the prevention and treatment of COVID-19, SSRG International Journal of Applied Chemistry, 7(2) (2020) 48-55.
[29] V.R.Kulli, B.Chaluvaraju and H.S. Baregowda, K-Banhatti and K hyper-Banhatti indices of windmill graphs, South East Asian J. of Math. and Math. Sci, 13(1) (2017) 11-18.
[30] Y. C.Kwrin, J Ahmad, W. Nazeer and S.M. Kang, Topological invariants of molecular graph of graphene, JP Journal of Geometry and Topology, 21(2) (2018) 95-103.
[31] V.R.Kulli, B.Chaluvaraju and H.S.Baregowda, Some bounds of sum connectivity Banhatti index of graphs, Palestine Journal of Mathematics, 8(2) (2019) 355-364.
[32] I. Gutman, V.R. Kulli, B. Chaluvaraju and H. S. Boregowda, On Banhatti and Zagreb indices, Journal of the International Mathematical Virtual Institute, 7(2017) 53-67.
[33] V.R.Kulli, New K Banhatti topological indices, International Journal of Fuzzy Mathematical Archive, 12(1) (2017) 29-37.
[34] V.R.Kulli and B. Chaluvaraju, Zagreb-K-Banhatti index of a graph, Journal of Ultra Scientist of Physical Sciences - A 32(5) (2020) 29-36.
[35] V.R.Kulli, Second Zagreb-K-Banhatti index of a graph, International Journal of Mathematical Archive, 11(10) (2020) 19-27.
[36] V.R.Kulli, Hyper Zagreb-K-Banhatti indices of a graph, International Journal of Mathematics Trends and Technology, 66(8) (2020) 123-130.
[37] V.R.Kulli, Some bounds on sum connectivity and product connectivity Zagreb-K-Banhatti indices of graphs, International Journal of Engineering Sciences and Research Technology, 9(9) (2020) 144-157.
[38] J.M.Rodriguez and J. M. Sigarreta, New results on the harmonic index and its generalizations, MATCH Commun. Math. Comput. Chem. 78 (2017) 387-404.
V.R. Kulli, "Harmonic Zagreb-K-Banhatti Index of a Graph," International Journal of Mathematics Trends and Technology (IJMTT), vol. 66, no. 10, pp. 123-132, 2020. Crossref, https://doi.org/10.14445/22315373/IJMTT-V66I10P514