Volume 66 | Issue 10 | Year 2020 | Article Id. IJMTT-V66I10P518 | DOI : https://doi.org/10.14445/22315373/IJMTT-V66I10P518
Arun Kumar Chaudhary, Vijay KumaR, "Logistic Inverse Exponential Distribution with Properties and Applications," International Journal of Mathematics Trends and Technology (IJMTT), vol. 66, no. 10, pp. 151-162, 2020. Crossref, https://doi.org/10.14445/22315373/IJMTT-V66I10P518
[1] Basheer, A. M. (2019). Marshall–Olkin alpha power inverse exponential distribution: properties and applications. Annals of data science, 1-13.
[2] Birnbaum, Z.W., Saunders, S.C. (1969), "Estimation for a family of life distributions with applications to fatigue", Journal of Applied Probability, vol. 6, 328 -347.
[3] Burr, I.W. (1942). Cumulative frequency distribution, Annals of Mathematical Statistics, 13, 215-232.
[4] Casella, G., & Berger, R. L. (1990). Statistical Inference. Brooks/ Cole Publishing Company, California.
[5] Chaudhary, A. K., Sapkota, L. P. & Kumar, V. (2020). Truncated Cauchy power–inverse exponential distribution: Theory and Applications. IOSR Journal of Mathematics (IOSR-JM), 16(4), 12-23.
[6] Chen, Z. (2000). A new two-parameter lifetime distribution with bathtub shape or increasing failure rate function. Statistics & Probability Letters, 49, 155-161.
[7] Gupta, R. D. and Kundu, D. (1999). Generalized exponential distributions, Australian and New Zealand Journal of Statistics, 41(2), 173 - 188.
[8] Keller, A. Z., Kamath, A. R. R., & Perera, U. D. (1982). Reliability analysis of CNC machine tools. Reliability engineering, 3(6), 449-473.
[9] Kumar, V. and Ligges, U. (2011). reliaR: A package for some probability distributions, http://cran.r-project.org/web/packages/reliaR/index.html.
[10] Lan, Y., & Leemis, L. M. (2008). The logistic–exponential survival distribution. Naval Research Logistics (NRL), 55(3), 252-264.
[11] Ming Hui, E. G. (2019). Learn R for applied statistics. Springer, New York.
[12] Moors, J. J. A. (1988). A quantile alternative for kurtosis. Journal of the Royal Statistical Society: Series D (The Statistician), 37(1), 25-32.
[13] Oguntunde, P. E., Adejumo, A., & Owoloko, E. A. (2017). Application of Kumaraswamy inverse exponential distribution to real lifetime data. International Journal of Applied Mathematics and Statistics.
[14] Prakash, G. (2012). Inverted Exponential distribution under a Bayesian viewpoint. Journal of Modern Applied Statistical Methods, 11(1), 16.
[15] Rao, G. S. (2013). Estimation of reliability in multicomponent stress-strength based on inverse exponential distribution. International Journal of Statistics and Economics, 10(1), 28-37.
[16] R Core Team (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/
[17] Rizzo, M. L. (2008). Statistical computing with R. Chapman & Hall/CRC.
[18] Smith, R.M. and Bain, L.J. (1975). An exponential power life-test distribution, Communications in Statistics, 4, 469-481
[19] Swain, J. J., Venkatraman, S. & Wilson, J. R. (1988). Least-squares estimation of distribution functions in johnson’s translation system. Journal of Statistical Computation and Simulation, 29(4), 271–297.
[20] Tahir, M. H., Cordeiro, G. M., Alzaatreh, A., Mansoor, M., & Zubair, M. (2016). The logistic-X family of distributions and its applications. Communications in Statistics-Theory and Methods, 45(24), 7326-7349.