Volume 66 | Issue 11 | Year 2020 | Article Id. IJMTT-V66I11P506 | DOI : https://doi.org/10.14445/22315373/IJMTT-V66I11P506
In this paper, the notions of generalized (l, r)-derivation, generalized (r, l)-derivation, and generalized derivation of BP-agebra are introduced, and some related properties are investigated. Also, we consider generalized (l, r)-f-derivation, generalized (r, l)-f-derivation, and generalized f-derivation of BP-aljabar, where f be an endomorphism of BP-algebra, and their properties are established in details.
[1] S. S. Ahn and J. S. Han, On BP-algebras, Hacettepe Journal of Mathematics and Statistics, 42 (2013), 551-557.
[2] M. Ashraf, S. Ali, and C. Haetinger, On derivations in rings and their applications, The Aligarh Bulletin of Mathematics, 25 (2006), 79-107.
[3] N. Kandaraj and A. A. Devi, f-Derivations on BP-algebras, International Journal of Scientific and Research Publications, 6 (2016), 8-18.
[4] C. Jana, T. Senapati, and M. Pal, Derivation, f-derivation and generalized derivation of KUS-algebras, Cogent Mathematics, 2 (2015), 1-12.
[5] K. H. Kim, On generalized f-derivations of BE-algebras, International Mathematical Forum, 9 (2014), 523-531.
[6] C. B. Kim and H. S. Kim, On BM-algebras, Scientiae Mathematicae Japonicae Online, (2006), 215-221.
[7] H. S. Kim and H. G. Park, On 0-commutative B-algebras, Scientiae Mathematicae Japonicae Online, 18 (2005), 31-36.
[8] J. Neggers and H. S. Kim, On B-algebras, Matematicki Vesnik, 54 (2002), 21-29.
[9] K. Sugianti and S. Gemawati, Generalized derivations of BM-algebras, preprint, 2020.
[10] S.A. N. Zadeh, A. Radfar, and A. B. Saied, On BP-algebras and QS-algebras, The Journal of Mathematics and Computer Science, 5 (2012), 17-21.
Chintia Ramadhona, Sri Gemawati, Syamsudhuha, "Generalized f-Derivation of BP-Algebras," International Journal of Mathematics Trends and Technology (IJMTT), vol. 66, no. 11, pp. 80-86, 2020. Crossref, https://doi.org/10.14445/22315373/IJMTT-V66I11P506