Volume 66 | Issue 11 | Year 2020 | Article Id. IJMTT-V66I11P507 | DOI : https://doi.org/10.14445/22315373/IJMTT-V66I11P507
In this work, considering a special subclass of the family of holomorphic functions in an open unit disk, defined by means of quasi-subordination, we determine sharp bounds for Fekete-Szego functional |d3-ξd22| of functions in this class. Several results for new classes and connections to known classes are mentioned.
[1] Abdul Rahman S.Juma and Mohammed H. Saloomi, Generalized differential operator on bistarlike and biconvex functions associated by quasi-subordination, IOP conf. series:Journal of Physics: Conf. Series 1003 (2018), 012046.
[2] D. Bansal, Fekete-Szego problem for a new class of analytic functions, Int. J. Math. Math. Sci., Article ID 143096 (2011), 5 pages.
[3] R. Bharavi Sharma and K. Rajya Laxmi, Fekete-Szego inequalities for some subclasses of bi-univalent functions through quasi-subordination, Asian European Journal of Mathematics, 13(1) (2020), 2050006 (16 pages).
[4] M. Fekete and G. Szego, Eine Bemerkung Uber ungerade schlichte Funktionen,J. London Math. Soc., 8 (1933), 85-89.
[5] S. P. Goyal and O. Singh, Fekete-Szego problems and coefficient estimates of quasi-subordination classes, J. Rajasthan Acad. Phys. Sci., 13 (2) (2014), 133-142.
[6] G. Singh, G. Singh and G. Singh, Certain subclases of bi-close -to-convex functions associated with quasisubordination, Abstract and Applied Analysis, Vol. 2019, Article 1D6947020, 6 pages, 2019.
[7] S. Kant and P. P. Vyas, Sharp bounds of Fekete-Szego functional for quasi-subordination class, Acta. Univ. Sapientiae Math., 11 (1) (2019), 87-98.
[8] F. R. Keogh and E. P. Merkes, A coefficient inequality for certain classes of analytic functions, Proc. Amer. Math. Soc., 20 (1969), 8-12.
[9] W. Koepf, On the Fekete-Szego problem for close-to-convex functions, Proc. Amer. Math. Soc., 101 (1) (1987), 89-95.
[10] N. Magesh, V. K. Balaji and J. Yamini, Certain subclasses of bi-starlike and bi-convex functions based on quasi-subordination, Abstact and Applied Analysis, Vol. 2016, Article ID 3102960, 6 pages, 2016.
[11] M.H. Mohd and M. Darus, Fekete Szego problems for Quasi-Subordination classes, Abstact and Applied Analysis, Vol.2012, Article ID 192956, 14 pages, 2012.
[12] Z. Nehari, Conformal mapping, Dover, New York (1975) (reprinting of the 1952 edition).
[13] T. Panigrahi and R. K. Raina, Fekete-Szego coefficient functional for quasi-subordination class, Afro. Mat., 28 (5-6) (2017), 707-716.
[14] F.Y. Ren, S. Owa and S. Fukui, Some Inequalities on Quasi-Subordinate functions, Bull. Aust. Math.Soc., 43 (2) (1991), 317-324.
[15] M.S. Robertson, Quasi-subordination and coefficient conjecture, Bull. Amer. Math. Soc., 76 (1970), 1-9.
[16] H. M. Srivastava, A. K. Mishra and M. K. Das, The Fekete-Szego problem for a subclass of close-to-convex functions, Complex Var. Theory Appl., 44 (2001), 145-163.
[17] S.R. Swamy, Ruscheweyh derivative and a new generalized Multiplier differential operator, Annals of pure and Applied Mathematics, 10 (2) (2015), 229-238.
[18] S. R. Swamy and Y. Sailaja, On the Fekete-Szego coefficient functional for quasi-subordination class, Palastine Journal of Mathematics, 10 (2021), 10 Pages. (In Press)
S. R. SWAMY, Y SAILAJA, "SHARP BOUNDS OF FEKETE-SZEGO FUNCTIONAL FOR QUASI-SUBORDINATION CLASS," International Journal of Mathematics Trends and Technology (IJMTT), vol. 66, no. 11, pp. 87-94, 2020. Crossref, https://doi.org/10.14445/22315373/IJMTT-V66I11P507