Volume 66 | Issue 12 | Year 2020 | Article Id. IJMTT-V66I12P505 | DOI : https://doi.org/10.14445/22315373/IJMTT-V66I12P505
Intan Arfina, Mashadi, "Alternative Arithmetic of Pentagonal Fuzzy Numbers," International Journal of Mathematics Trends and Technology (IJMTT), vol. 66, no. 12, pp. 28-36, 2020. Crossref, https://doi.org/10.14445/22315373/IJMTT-V66I12P505
[1] A. S. Abidin, Mashadi, and S. Gemawati, Algebraic modification of trapezoidal fuzzy numbers to complete fully fuzzy linear equations system using gauss-jacobi method, International Journal of Management and Fuzzy Systems,5 (2019), 40-46.
[2] Z. Desmita and Mashadi, Alternative multiplying triangular fuzzy number and applied in fully fuzzy linear system, American Scientific Research Journal for Engineering, Technology and Science, 56 (2019), 113-123.
[3] D. S. Dinagar and M. M. Jeyavuthin, Distinct methods for solving fully fuzzy linear programming problems with pentagonal fuzzy numbers, Journalof Computer and Mathematical Sciences, 10 (2019), 1253-1260.
[4] S. S. Geethaand K. Selvakumari, A new method for solving fuzzy transportation problem using pentagonal fuzzy numbers, Journal of Critical Reviews,7 (2020), 171-174.
[5] R. Helen and G. Uma, A operations and rangking on petagonal fuzzy numbers,International Journal of Mathematical Science and Application, 5(2015), 341-346.
[6] A.J. Kamble, Some notes on pentagonal fuzzy numbers, International Journal Fuzzy Mathematical Archive, 13 (2017), 113-121.
[7] H. Kholida and Mashadi, Alternative fuzzy algebra for fuzzy linear system using cramers rules on fuzzy trapozoidal Number, International Journal of Innovative Science and Research Technology, 4 (2019), 494-504.
[8] S. I. Marni, Mashadi, and S. Gemawati, Solving dual fully fuzzy linear system by use factorizations of the coefficient matrix for trapezoidal fuzzy number, Bulletin of Mathematics, 10 (2018), 145-56.
[9] Mashadi, A new method for dual fully fuzzy linear system by Use LU factorizations of The coefficient matrix, Jurnal Matematika dan Sains, 15(2010), 101-106.
[10] S. P. Mondaand M. Mandal, Pentagonal fuzzy number, its properties andapplication in fuzzy equation, Future Computing and Informatics Journal,2 (2017), 110-117.
[11] A. Panda and M. Pal, A study on pentagonal fuzzy number and its corresponding matrices, Pacific Science Review B: Humanities and Social Sciences,1 (2015), 131-139.
[12] T. Pathinathan and K. Ponnivalavan, Pentagonal fuzzy number, International Journal of Computing Algorithm, 3 (2014), 1003-1005.
[13] T. Pathinathan and E. A. Dolorosa ,Symmetric periodic fourier series using pentagonal fuzzy number, Journal of Computer and Mathematical Sciences, 10 (2019), 510-518.
[14] S. Ramliand S. H. Jaaman, Optimal solution of fuzzy optimization using pentagonal fuzzy numbers, American Institute of Physics Conference Proceedings,1974 (2018), 1-8.
[15] P. Selvam, A. Rajkumarand J. S. Easwari, Ranking of pentagonal fuzzy numbers applying incentre of centroids, International Journal of Pure and Applied Mathematics, 117 (2017), 165-174.
[16] Y. SafitriandMashadi, Alternative fuzzy algebra to solve dual fully fuzzy linear system using st decomposition method, The Internasional Organization of Scientific Research -Journal of Mathematics, 15 (2019), 32-38.
[17] D. R. A. Sari and Mashadi, New arithmetic triangular fuzzy numberfor solving fully fuzzy linear system using inverse matrix, International Journal of Science: Basic and Applied Research, 46 (2019),169-180.
[18] V. Vijayalakshmi and A. Karpagam, Pentagonal fuzzy number by Cholesky decomposition and singular value decomposition, International Journal ofMathematics Research, 11 (2019), 19-28.
[19] L. A. Zadeh,Fuzzy Sets, Information and Control, 8 (1965), 338-353.
[20] L. A. Zadeh, The Concept of a linguistic variable and its application toapproximate reasoning-I, Information Sciences, 8 (1975), 199-249.