Convergence of Modified Picard-Mann Hybrid Iteration Process For Nearly Nonexpansive Mappings

  IJMTT-book-cover
 
International Journal of Mathematics Trends and Technology (IJMTT)
 
© 2020 by IJMTT Journal
Volume-66 Issue-12
Year of Publication : 2020
Authors : Adrian Ghiura
  10.14445/22315373/IJMTT-V66I12P506

MLA

MLA Style: Adrian Ghiura  "Convergence of Modified Picard-Mann Hybrid Iteration Process For Nearly Nonexpansive Mappings" International Journal of Mathematics Trends and Technology 66.12 (2020):37-43. 

APA Style: Adrian Ghiura(2020). Convergence of Modified Picard-Mann Hybrid Iteration Process For Nearly Nonexpansive Mappings  International Journal of Mathematics Trends and Technology, 37-43.

Abstract
In this paper, we prove the strong convergence theorems for nearly nonexpansive mappings, using the modified Picard-Mann hybrid iteration process in the context of uniformly convex Banach space.

Reference

[1] R. P. Agarwal, D. O’Regan and D. R. Sahu, Iterative construction of fixed points of nearly asymptotically nonexpansive mappings, J. Nonlinear Convex Anal., 8 (1) (2007), 61-79.
[2] H. Akewe, G. A. Okeke, Convergence and stability theorems for the Picard-Mann hybrid iterative scheme for a general class of contractive-like operators, Fixed Point Theory Appl., 66 (2015), 1-8.
[3] F. E. Browder, Nonexpansive nonlinear operators in Banach space, Proc. Nat. Acad. Sci. U.S.A., 54 (1965), 1041-1044.
[4] B. Geethalakshmi, R. Hemavathy, Picard-Mann Hybrid Iteration Processes for Monotone Non Expansive Mappings, International Journal of Mathematics Trends and Technology, 55 (5) (2018), 367-370.
[5] K. Goebel and W. A. Kirk, A fixed point theorem of asymptotically nonexpansive mappings, Proc. Amer. Math. Soc., 35 (1972), 171-174.
[6] S. Goyal, A Generalization of a fixed point theorem of Hong-Kun Xu, International Journal of Mathematics Trends and Technology, 38 (1) (2016), 23-26.
[7] S. Ishikawa, Fixed points by a new iteration method, Proc.Am. Math. Soc., 44 (1974), 147-150.
[8] S. H. Khan, A Picard-Mann hybrid iterative process, Fixed Point Theory Appl., 69 (2013), 1-10.
[9] Ritika and S. H. Khan, Convergence of Picard-Mann Hybrid Iterative Process for Generalized Nonexpansive Mappings in CAT(0) Spaces, Filomat, 31 (11) (2017), 3531-3538.
[10] W. R. Mann, Mean value methods in iteration, Proc. Am. Math. Soc., 4 (1953), 506-510.
[11] M. O. Osilike and S. C. Aniagbosor, Weak and strong convergence theorems for fixed points of asymptotically nonexpansive mappings, Math. Comput. Modelling, 32 (2000), 1181-1191.
[12] E. Picard, Memoire sur la theorie des equations aux derivee partielles et la metode des approximations successives, J. Math. Pures. Appl., 6 (1890), 145-210.
[13] D. R. Sahu, Fixed points of demicontinuous nearly Lipschitzian mappings in Banach spaces, Comment. Math. Univ. Carolin, 46 (2005), 653-666.
[14] J. Schu, Iterative construction of fixed points of asymptotically nonexpansive mappings, J. Math. Anal. Appl., 158 (1991), 407-412.
[15] H. F. Senter and W. G. Dotson, Approximating fixed points of nonexpansive mappings, Proc. Am. Math. Soc., 44 (2) (1974), 375-380.

Keywords : Nonexpansive mapping, asymptotically nonexpansive mapping, nearly nonexpansive mapping, uniformly Lipschitzian mapping, fixed point, Mann iteration.