Volume 66 | Issue 12 | Year 2020 | Article Id. IJMTT-V66I12P513 | DOI : https://doi.org/10.14445/22315373/IJMTT-V66I12P513
Kulkarni Pramod Ramakant, "On Existence of Period Three Orbit and Chaotic Nature of a Family of Mappings," International Journal of Mathematics Trends and Technology (IJMTT), vol. 66, no. 12, pp. 85-90, 2020. Crossref, https://doi.org/10.14445/22315373/IJMTT-V66I12P513
[1] Cook P. A., Nonlinear Dynamical Systems (Prentice-Hall International (UK) Ltd.1986.)
[2] J. Banks, J. Brooks, G. Cairns, G. Davis, P. Stacey, On Devaney's Definition of Chaos, American Mathematical Monthly, Vol. 99,No.4 (Apr.,1992), 332-334.
[3] Kathleen T Alligood, Tim D. Sauer, James A. Yorke, Chaos an Introduction to Dynamical Systems (Springer-Verlag New York, Inc.)
[4] Devaney, Robert L., An introduction to Chaotic Dynamical System (Cambridge, M A : Persuse Books Publishing, 1988).
[5] Edward R. Scheinerman, Invitation to Dynamical Systems.
[6] Tien-Yien Li and James A. Yorke, Period three implies chaos American Mathematical Monthly, Vol. 82, No. 10, (Dec. 1975) pp 985-992.
[7] Mr. Kulkarni P. R., Dr. Borkar V. C., Chaos in the Dynamics of the Family of Mappings fc (x) = x2 – x + c, IOSR Journal of Mathematics(IOSR-JM) Volume 10, Issue 4, Version IV (Jul.-Aug. 2014), pp 108-116.
[8] Chyi-Lung Lin and Mon-Ling Shei, Logistic Map f(x)=μx(1-x) is Topologically Conjugate to the Map f(x)=(2-μ)x(1-x), Tamkang Journal of Science and Engineering, Vol. 10, No. 1, pp 89-94 (2007).
[9] Kulkarni P. R. and Borkar V. C., Topological conjugacy and the Chaotic Nature of the Family of Mappings fc (x) = x2 – x + c, International Journal of Scientific and Innovative Mathematical Research (IJSIMR), Volume 2, Issue 11, November 2014 PP 868-875.