Volume 66 | Issue 12 | Year 2020 | Article Id. IJMTT-V66I12P515 | DOI : https://doi.org/10.14445/22315373/IJMTT-V66I12P515
Arun Kumar Chaudhary, Vijay Kumar, "A Two Parameter New Distribution for Life Time Data," International Journal of Mathematics Trends and Technology (IJMTT), vol. 66, no. 12, pp. 106-115, 2020. Crossref, https://doi.org/10.14445/22315373/IJMTT-V66I12P515
[1] Gupta, R. D. and Kundu, D. (1999). Generalized exponential distributions. Australian and New Zealand Journal of Statistics, 41(2), 173 - 188.
[2] Keller, A. Z., Kamath, A. R. R., & Perera, U. D. (1982). Reliability analysis of CNC machine tools. Reliability engineering, 3(6), 449-473.
[3] Joshi, R. K. & Kumar, V. (2020). Lindley exponential power distribution with Properties and Applications. International Journal for Research in Applied Science & Engineering Technology (IJRASET), 8(10), 22-30.
[4] Joshi, R. K. & Kumar, V. (2020). Lindley inverse Weibull distribution: Theory and Applications. Bull. Math. & Stat. Res., 8(3), 32-46.
[5] Joshi, R. K., Sapkota, L.P. & Kumar, V. (2020). The Logistic-Exponential Power Distribution with Statistical Properties and Applications, International Journal of Emerging Technologies and Innovative Research, 7(12), 629-641, ISSN:2349-5162, :http://www.jetir.org/papers/JETIR2012079.pdf
[6] Kumar, V. and Ligges, U. (2011). reliaR: A package for some probability distributions, http://cran.r-project.org/web/packages/reliaR/index.html.
[7] Lai, C., Xie, M., Murthy, D. (2003). A modified weibull distribution. IEEE Trans Reliab 52, 33-37.
[8] Lindley, D. V. (1958). Fiducial Distributions and Bayes Theorem. Journal of the Royal Society, Series B 20, 102-107.
[9] Marshall, A. W. and Olkin, I. (2007). Life Distributions: Structure of Nonparametric, Semiparametric and Parametric Families, Springer, New York.
[10] Moors, J. J. A. (1988). A quantile alternative for kurtosis. Journal of the Royal Statistical Society: Series D (The Statistician), 37(1), 25-32.
[11] Mudholkar G, Srivastava D, & Friemer M (1995). The exponentiated Weibull family: a reanalysis of the bus-motor-failure data. Technometrics 37, 436-445.
[12] Murthy, D.N.P., Xie, M. and Jiang, R. (2003). Weibull Models, Wiley, New York
[13] Nelson, W., & Doganaksoy, N. (1995). Statistical analysis of life or strength data from specimens of various sizes using the power-(log) normal model. Recent Advances in Life-Testing and Reliability, 377-408.
[14] Pham, H., & Lai, C. D. (2007). On recent generalizations of the Weibull distribution. IEEE transactions on reliability, 56(3), 454-458.
[15] R Core Team (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.
[16] Rinne, H. (2009). The Weibull distribution: a handbook CRC Press. Boca Raton.
[17] Schmuller, J. (2017). Statistical Analysis with R For Dummies, John Wiley & Sons, Inc., New Jersey
[18] Smith, R.M. and Bain, L.J. (1975). An exponential power life-test distribution, Communications in Statistics, 4, 469-481.
[19] Srivastava, A. K., & Kumar, V. (2011). Analysis of software reliability data using exponential power model. IJACSA Editorial.
[20] Swain, J. J., Venkatraman, S. & Wilson, J. R. (1988). Least-squares estimation of distribution functions in johnson’s translation system. Journal of Statistical Computation and Simulation, 29(4), 271–297.
[21] Weibull, W. (1951) A statistical distribution of wide applicability. J Appl Mech 18, 29-37.