Volume 66 | Issue 12 | Year 2020 | Article Id. IJMTT-V66I12P518 | DOI : https://doi.org/10.14445/22315373/IJMTT-V66I12P518
Kanint Teerapabolarn, "Bounds on Approximating Generalized Waring Distribution In A Generalized Waring Process," International Journal of Mathematics Trends and Technology (IJMTT), vol. 66, no. 12, pp. 128-133, 2020. Crossref, https://doi.org/10.14445/22315373/IJMTT-V66I12P518
[1] A. D. Barbour, L. Holst and S. Janson, “Poisson Approximation” (Oxford Studies in Probability 2), Clarendon Press, Oxford, 1992.
[2] T. C. Brown, and M. J. Phillips, “Negative binomial approximation with Stein’s method”. Methodology and Computing in Applied Probability, vol. 1, 407-421, 1999.
[3] Q. L. Burrell, “The use of the generalized Waring process in modelling informatic data”. Scientometrics, vol. 64, pp. 247-270, 2005.
[4] T. Cacoullos, and V. Papathanasiou, “Characterization of distributions by variance bounds”. Statistics & Probability Letters, vol. 7, 351-356, 1989.
[5] L. H. Y. Chen, “Poisson approximation for dependent trials”. Annals of Probability, vol. 3, pp. 534-545, 1975.
[6] K. Jaioun, and K. Teerapabolarn, “A uniform bound on negative binomial approximation with w-functions”. Applied Mathematical Sciences, vol. 9, 2831-2841, 2015.
[7] B. Palumbo, “A generalization of some inequalities for the gamma function”. Journal of Computational and Applied Mathematics, vol. 8, 255-268, 1997.
[8] C. M. Stein, “A bound for the error in normal approximation to the distribution of a sum of dependent random variables”, Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability, California, Vol. 19-22, pp. 583-602, 1972.
[9] K. Teerapabolarn, and A. Boondirek, “Negative binomial approximation with Stein’s method and Stein’s identity”. International Mathematical Forum, vol. 5, 2541-2551, 2010.
[10] K. Teerapabolarn, “An improved bound for negative binomial approximation with z-functions”. AKCE International Journal of Graphs and Combinatorics, vol. 14, 287-294, 2017.
[11] W. S. Wang, “Some properties of k-gamma and k-beta functions”. ITM Web of Conferences, vol. 7, 1-6, 2016.
[12] E. Xekalaki, and M. Zografi, “The generalized Waring process and it application”. Communications in Statistics-Theory and Methods , vol. 37, 1835-1854, 2008.