Volume 66 | Issue 1 | Year 2020 | Article Id. IJMTT-V66I1P504 | DOI : https://doi.org/10.14445/22315373/IJMTT-V66I1P504
In this note, we give the some properties of the new subclass of λ-q-spirallike function, with negative coefficients and with fixed second coefficients.
[1] R.Geetha, _xed coe_cients for a new subclass of uniformly spirallike functions, Univ. Apulensis, 40 (2014), 233-243.
[2] R.Geetha and P.Hema, _xed coe_cients for a new subclass of uniformly spirallike functions",Int. J. Math., 58(4)(2014), 298-305.
[3] A.W.Goodman, On uniformly convex functions, Ann. Polon. Math.,56(1991), 87-92.
[4] F.H.Jackson, On q-functions and a certain di_erence operator, Trans. Royal Soc. Edinburgh, 46 (1909), 253-281.
[5] V.Ravichandran, C.Selvaraj and R.Rajagopal, On uniformly convex spiral functions and uniformly spirallike function, Soochow J. Math., 29(4)(2003), 392-406.
[6] S.A.Read, S.Hamid and S.Latha, On Subclasses of Uniformly q-Convex Spirallike Functions and Corresponding Class of q-Spirallike Functions
[7] M.S.Robertson, Univalent functions f(z) for which zf’(z) is spirallike, Mich. Math. J., 16(1969), 97-101.
[8] F.Ronning, Uniformly convex functions and a corresponding class of starlike functions, Proc.Amer. Math. Soc., 18(1)(1993), 189-196.
[9] C.Selvaraj and R.Geetha, On certain subclasses of holomoprhic functions defined on the unit disk, Acta univ. Apul., 36 (2013), 225-233.
[10] L.Spacek, Prispevek k teorii funkei prostych, Capopis Pest. Math. Fys., 62 (1933), 12-19.
Read. S. A. Qahtan, Hamid Shamsan, S. Latha, "Fixed Coefficients For A New Subclasses Of Uniformly q-Spirallike Functions," International Journal of Mathematics Trends and Technology (IJMTT), vol. 66, no. 1, pp. 18-27, 2020. Crossref, https://doi.org/10.14445/22315373/IJMTT-V66I1P504