Volume 66 | Issue 1 | Year 2020 | Article Id. IJMTT-V66I1P522 | DOI : https://doi.org/10.14445/22315373/IJMTT-V66I1P522
The present article is to study the convergence properties of Lebesgue measurable functions based on Dunkl Analogue. We construct a new modied version of Phillips-operators by introducing the new parameters α, β and υ. To obtain the results of uniform convergence in a better way of the Phillips-operators we calculate the qualitative results in a Korovkin and weighted Korovkin spaces.
[1] A. Alotaibi, M. Nasiruzzaman, M. Mursaleen, A Dunkl type generalization of Sz´asz operators via post-quantum calculus, J. Inequal. Appl., 2018, Article ID: 287 (2018)
[2] C¸ . Atakut, N. Ispir, Approximation by modified Sz´asz-Mirakjan operators on weighted
spaces, Proc. Indian Acad. Sci. Math. Sci., 112, 2002, 571–578.
[3] S.N. Bernstein, D´emonstration du th´eor´eme de Weierstrass fond´ee sur le calcul des probabilit´es, Commun. Soc. Math. Kharkow., 2(13), 1912, 1–2.
[4] A. Ciupa, A class of integral Favard-Sz´asz type operators, Stud. Univ. Babe¸s-Bolyai, Math.,
40(1), 1995, 39–47.
[5] A. Gadˇziev, A problem on the convergence of a sequence of positive linear operators on
unbounded sets, and theorems that are analogous to P.P. Korovkin’s theorem. Dokl. Akad.
Nauk SSSR 218, 1974(Russian), 1001-–1004.
[6] G. ˙I¸c¯oz, B.C¸ ekim, Stancu type generalization of Dunkl analogue of Sz´asz-Kamtrovich operators, Math. Meth. Appl. Sci., 39(7), 2016, 1803–1810.
[7] G. ˙I¸c¯oz, B.C¸ ekim, Dunkl generalization of Sz´asz operators via q-calculus, Jour. Ineq.
Appl.,284, (2015)
[8] U. Kadak, Weighted statistical convergence based on generalized difference operator involving (p, q)-Gamma function and its applications to approximation theorems, Journal of
Mathematical Analysis and Applications, vol. 448(2), 2017, 1633–1650.
[9] M. Mursaleen, K.J. Ansari, A. Khan, On (p, q)-analogue of Bernstein operators, Appl.
Math. Comput. 266, 2015, 874–882.
[10] M. Mursaleen, S. Rahman, Dunkl Generalization of q-Sz´asz-Mirakjan Operators which
Preserve x
2
, Filomat 32(3), 2018, 733—747.
[11] M. Mursaleen, S. Rahman, A. Alotaibi, Dunkl generalization of q-Sz´asz-Mirakjan Kantorovich operators which preserve some test functions, Journal of Inequalities and Applications 2016:317, (2016)
[12] M. Mursaleen, A. Khan, Statistical approximation properties of modified q-Stancu-beta
operators. Bull. Malays. Math. Sci. Soc. 36(3), 2013, 683—690.
[13] M. Mursaleen, A. Khan, Generalized q-Bernstein-Schurer operators and some approximation theorems, J. Funct. Spaces Appl. Art. ID 719,834, 7 (2013)
[14] S.A. Mohiuddine, T. Acar, A. Alotaibi, Durrmeyer type (p, q)-Baskakov operators preserving linear functions, J. Math. Inequal. 12(4), 2018, 961–973.
[15] M. Nasiruzzaman, N. Rao, A generalized Dunkl type modifications of Phillips operators,
Journal of Inequalities and Applications, 2018:323, (2018)
[16] M. Nasiruzzaman, A. Mukheimer, M. Mursaleen, Approximation results on Dunkl generalization of Phillips operators via q-calculus, Advances in Difference Equations, 2019 244
(2019)
[17] M. Nasiruzzaman, A. Mukheimer, M. Mursaleen, A Dunkl–Type Generalization of Sz´aszKantorovich Operators via Post-Quantum Calculus, Symmetry, 11, 232 (2019)
[18] R.S. Phillips, An inversion formula for semi groups of linear operators, Ann. Math. 59,
1954, 352—356.
[19] N. Rao, A. Wafi, A.M. Acu, q -Sz´asz-Durrmeyer type operators based on Dunkl analogue,
Complex Anal. Oper. Theory. doi.org
[20] M. Rosenblum, Generalized Hermite polynomials and the Bose-like oscillator calculus,
Oper. Theory, Adv. Appl., 73, 1994, 369–396.
[21] O. Sz´asz, Generalization of S. Bernstein’s polynomials to the infinite interval, J. Res. Natl.
Bur. Stand., 45, 1950, 239–245. [22] S. Sucu, Dunkl analogue of Sz´asz operators, Appl. Math. Comput., 244, 2014, 42–48.
[23] N. Rao, A. Wafi, A.M, Acu, q -Sz´asz-Durrmeyer type operators based on Dunkl analogue,
Complex Anal. Oper. Theory, 13(3) (2019), 915-–934
Ravi Kumar, Md. Nasiruzzaman, "Approximation of Phillips-operators on new parameters and via Dunkl analogue," International Journal of Mathematics Trends and Technology (IJMTT), vol. 66, no. 1, pp. 175-187, 2020. Crossref, https://doi.org/10.14445/22315373/IJMTT-V66I1P522