Volume 66 | Issue 1 | Year 2020 | Article Id. IJMTT-V66I1P525 | DOI : https://doi.org/10.14445/22315373/IJMTT-V66I1P525
In this work, a new exact solitary wave solution expressible in terms of Weierstrass elliptic function of the time-dependent coefficient KdV equation with power-law nonlinearity is obtained. I also obtained a hyperbolic solution as a limiting case.
[1] C. A. G. Sierra J. Comp. Appl. Math. 235 5330 (2011)
[2] K. Pradhan and P. K. Panigrahi J. Phys. A: Math. Gen. 39 L343 (2006)
[3] M. R. Gupta Phys. Lett. A72 420 (1979)
[4] M. J. Ablowitz, D. J. Kaup, A. C. Newell and H. Segur Stud. Appl. Math. 53 249 (1974)
[5] M. J. Ablowitz and P. A. Clarkson Soliton, nonlinear evolution equation and inverse scattering Cambridge University press, New York (1991)
[6] M. Lakshmanan and S. Rajasekar Nonlinear dynamics : Integrability, Chaos and Patterns, Advanced Texts in Physics Springer-Verlag, Berlin (2003)
[7] S. Das and D. Ghosh International Journal of Advanced Research in Mathematics 6 32-41 (2016)
[8] A. Biswas Nonlin. Dyn. 58 345 (2009)
[9] A. Biswas Commun. Nonlin. Sci. Num. Sim. 14 350 (2009)
[10] E.A. Saied,Reda G. Abd EI-Rahman, Marwa I. Ghonamy Computers and Math-ematics with Applications 58 1725-1735 (2009)
[11] C.A. Gomez and A. Salas Appl.Math.Compt. 204 957 (2008)
Dibyendu Ghosh, "New exact solution for a generalized variable coefficient KdV equation with power law nonlinearity in terms of Weierstrass elliptic functions," International Journal of Mathematics Trends and Technology (IJMTT), vol. 66, no. 1, pp. 205-207, 2020. Crossref, https://doi.org/10.14445/22315373/IJMTT-V66I1P525