Volume 66 | Issue 1 | Year 2020 | Article Id. IJMTT-V66I1P528 | DOI : https://doi.org/10.14445/22315373/IJMTT-V66I1P528
Orthogonality is the generalization of the notion of perpendicularity to the linear algebra of bilinear forms. Two elements of x and y of a vector space with bilinear form B are Orthogonal when B
[1] Ahkiezer, N.I., the classical moment problem, Hafner, new york, N.Y., (1965)
[2] Askey, R., Ismail, M.E.H., Recurrence relations, continued fractions and Orthogonal polynomials, memoirs amer, math., soc ., 300(1984)
[3] Birikhoff, G.(1935) Orthogonality in linear metric spaces, duke math.J. (1), 169-172
[4] Bustoz, J., Ismail, M.E.H., the associated ultra-spherical polynomials and their q-analogous, candian journal of math. 34(1982)
[5] Conway J 1990 a course in functional analysis new york: springer – verlag
[6] Diestel, joseph(1943), sequences and series in Banach spaces, new york, springer – verlag
[7] James, R. C.(1945), Orthogonality in normal linear spaces, duke math. J. (12), 291-302
[8] Khalil, R. and alkhawalda, A, university of Jordan department of mathematics,
[9] Khalil, R.(1990) Orthogonality in Banach spaces math. J, of toyama university(13), 185-205
[10] L.Debnath, F.A. Shah, wavelet transformation and their application Jairo a. charris and luis a. gomez
[11] Saidi, F. (2002), characterization of Orthoganality in certain Banach spaces, bull. Austral. Math. Soc. (65), 93-104
[12] Singer, I.(1970), Bases in Banach spaces, springer-verlog, new york
[13] Szego, G., Orthogonal polynomials, amer. Math. Soc. Colloquium publications, vol. XXII, 4th ed., providence., R.I., 1975
B.Kokila, N.Mythili, S.Sravanthi, "Different Types of Orthogonalities In Functional Analysis," International Journal of Mathematics Trends and Technology (IJMTT), vol. 66, no. 1, pp. 220-224, 2020. Crossref, https://doi.org/10.14445/22315373/IJMTT-V66I1P528