Volume 66 | Issue 1 | Year 2020 | Article Id. IJMTT-V66I1P533 | DOI : https://doi.org/10.14445/22315373/IJMTT-V66I1P533
Rigobert Fokam, Laurent Bitjoka, Hypolyte Egole, "Complex Basis For Spectral Analysis of Graph Signals," International Journal of Mathematics Trends and Technology (IJMTT), vol. 66, no. 1, pp. 248-260, 2020. Crossref, https://doi.org/10.14445/22315373/IJMTT-V66I1P533
[1] R.B. Bapat, Graphs and Matrices, ‗‘Hindustan Book Agency‘‘, 2010.
[2] C. Godsil, and G. Royle, ‗‘Algebraic Graph Theory‘‘, volume 207 of Graduate Texts in Mathematics, Springer, 2001.
[3] J. Akiyama and M. Kano, ‗‘Factors and Factorizations of Graphs: Proof Techniques in Factor Theory‘‘, volume 2031 of Lecture Notes in Mathematics, Springer, 2010.
[4] N. Tremblay, ‗‘Signal and networks: signal processing tools for networks analysis‘‘, PhD Thesis, Ecole Normale Supésieur de Lyon, 2014.
[5] G. Proakis, G. Dimitri,‘‘ Digital Signal Processing: Principles, Algorithms and Applications (3 ed.)‘‘, Upper Saddle River, NJ: Prentice-Hall International, 1996.
[6] A. Ortega, P. Frossard, J. Kovǎcevíc, J. M. Moura, and P. Vandergheynst, ―Graph signal processing: Overview, challenges, and applications,‖ Proceedings of the IEEE, vol. 106(5), pp. 808–828, 201
[7] Aliaksei Sandryhaila and José MF Moura, ―Discrete signal processing on graphs,‖ Signal Processing, IEEE Transactions on, vol. 61, no. 7, pp. 1644–1656, 2013.
[8] David I Shuman, Benjamin Ricaud, and Pierre Vandergheynst, ―Vertex-frequency analysis on graphs,‖ Applied and Computational Harmonic Analysis, vol. 40, no. 2, pp. 260–291, 2016.
[9] David K Hammond, Pierre Vandergheynst, and Rémi Gribonval, ―Wavelets on graphs via spectral graph theory,‖ Applied and Computational Harmonic Analysis, vol. 30, no. 2, pp. 129–150, 2011.
[10] Ronald R Coifman and Mauro Maggioni, ―Diffusion wavelets,‖ Applied and Computational Harmonic Analysis, vol. 21, no. 1, pp. 53–94, 2006.
[11] N. Tremblay and P. Borgnat, ―Multiscale detection of stable communities using wavelets on networks‖, European Conference of Complex Systems, 2013.
[12] Maarten Jansen, Guy P Nason, and Bernard W Silverman, ‗‘Multiscale methods for data on graphs and irregular multidimensional situations‘‘, Journal of the Royal Statistical Society : Series B (Statistical Methodology), 71(1) :97–125,2009.
[13] David I Shuman, Mohammad Javad Faraji, and Pierre Vandergheynst, ‗‘A framework for multiscale transforms on graphs‘‘, arXiv preprint arXiv :1308.4942, 2013.
[14] X. Dong, D. Thanou, M. Rabbat, and P. Frossard, ―Learning graphs from data: A signal representation perspective,‖ arXiv preprint arXiv:1806.00848, 2018.
[15] M. Defferrard, X. Bresson, and P. Vandergheynst, ―Convolutional neural networks on graphs with fast localized spectral filtering,‖ in Annu. Conf. Neural Inform. Process. Syst. 2016. Barcelona, Spain: NIPS Foundation, 5-10 Dec. 2016.
[16] F. Gama, A. G. Marques, G. Leus, and A. Ribeiro, ―Convolutional neural network architectures for signals supported on graphs,‖ IEEE Trans. Signal Process., vol. 67, no. 4, pp. 1034–1049, Feb. 2019.
[17] R. Levie, F. Monti, X. Bresson, and M. M. Bronstein, ―CayleyNets: Graph convolutional neural networks with complex rational spectral filters,‖ IEEE Trans. Signal Process., vol. 67(1), pp. 97–107, Jan. 2019.
[18] V. Kalofolias, ―How to learn a graph from smooth signals,‖ in Artificial Intelligence and Statistics, 2016, pp. 920–929.
[19] T. N. Kipf and M. Welling, ―Semi-supervised classification with graph convolutional networks,‖ in 5th Int. Conf. Learning Representations. Toulon, France: Assoc. Comput. Linguistics, 24-26 Apr. 2017.
[20] X. Dong, D. Thanou, P. Frossard, and P. Vandergheynst, ―Learning laplacian matrix in smooth graph signal representations,‖ IEEE Transactions on Signal Processing, vol. 64, no. 23, pp. 6160–6173, 2016.
[21] H. E. Egilmez, E. Pavez, and A. Ortega, ―Graph learning from data under laplacian and structural constraints,‖ IEEE Journal of Selected Topics in Signal Processing, vol. 11, no. 6, pp. 825–841, 2017.
[22] A. N. Akansu and H. Agirman-Tosun, "Generalized Discrete Fourier Transform With Nonlinear Phase", IEEE Transactions on Signal Processing, vol. 58, no. 9, pp. 4547-4556, Sept. 2010.
[23] David I Shuman, Sunil K Narang, Pascal Frossard, Antonio Ortega, and Pierre Vandergheynst, ―The emerging field of signal processing on graphs: Extending high-dimensional data analysis to networks and other irregular domains,‖ Signal Processing Magazine, IEEE, vol. 30, no. 3, pp. 83–98, 2013.
[24] P. Van Mieghem,‘‘Graph spectra for complex networks‘‘. Cambridge University press, 2011.
[25] B. Girault, A. Ortega Fellow, and S. Narayanan Fellow, ‗‘ Irregularity-Aware Graph Fourier Transforms‘‘, arXiv preprint arXiv:1802.10220ev, Dec 2018.
[26] E. Provenzi, ‗‘The Fourier transform and its applications‘‘, Lecture notes. Institut de mathématique de Bordeaux, Université de Bordeaux.
[27] A. Brandstädt, V.B. Le, and J.P. Spinrad, ‗‘Graph Classes - A Survey‘‘, volume 3. SIAM, Monographs on Discrete Mathematics and Applications, Philadelphia, 1999.
[28] G. Strang, ‗‘The discrete cosine transform‘‘, SIAM Review 1999 41:1, 135-147.
[29] F. Grantmacher, ‗‘The theory of matrices‘‘, volume one. Chelsea publishing company, 1960.
[30] P. Nathanaël, J. Paratte, D. Shuman, L. Martin, V. Kalofolias, P. Vandergheynst and David K. Hammond, ‗‘GSPBOX: A toolbox for signal processing on graphs‘‘, Arxiv e-print, 08-2014.