Volume 66 | Issue 2 | Year 2020 | Article Id. IJMTT-V66I2P503 | DOI : https://doi.org/10.14445/22315373/IJMTT-V66I2P503
We consider, for a bounded open domain Ω in IRn and a function u : Ω -> IRm, the quasilinear elliptic system (QES) { -divσ(x,u(x),Du(x)) =f(x) + g(x,u) in Ω u=0 on ∂ Ω, (0.1) where f belongs to the dual space W-1,p' (Ω,ω* , IRm ) of W01,p (Ω,ω,IRm), g satisfy some standard continuity and growth conditions. We prove existence of a regularity, growth and coercivity conditions for σ, but with only very mild monotonicity.
[1] Y. Akdim and E. Azroul: Pseudo-monotonicity and degenerated elliptic operator of second order. Electron. J. Diff. Eqns., Conf. 09, 2002, pp. 9-24.
[2] H. Brezis: Oprateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert. North-Holland Mathematics Studies, No. 5. Notas de Matematica (50). North-Holland Publishing Co., Amsterdam-London, American Elsevier Publishing Co. Inc. New York, 1973.
[3] F. E. Browder: Existence theorems for nonlinear partial differential equations. Global Anal- ysis (Berkeley, 1968), Proc. Sympos. Pure Math., no. XVI, AMS, Providence, 1970, pp. 1-60.
[4] P. Drabek, A. Kufner and V. Mustonen: Pseudo-monotinicity and degenerated, a singular operators. Bull. Austral. Math. Soc. Volume 58(1998), 213-221.
[5] G. Dolzmann, N. Hungerbuhler and S. Muller: Nonlinear elliptic systems with measure-valued right hand side. Math. Z. 226 (1997), 545-574.
[6] G. Dolzmann, N. Hungerbuhler and S. Muller: Uniqueness and maximal regularity for nonlinear elliptic systems of n-Laplace type with measure-valued right hand side.J.Reine Angew. Math. 520, 1-35 (2000).
[7] I. Fonseca, S. Muller: A-Quasiconvexity, Lower Semicontinuity, and young Mea- sures . SIAM Journal on Mathematical Analysis 30(6), 1355-1390 (1999).
[8] I. Fonseca, S. Muller, P. Pedregal: Analysis of concentration and oscillation eects generated by gradients. SIAM J. Math. Anal. 29 (1998),no.3, 736-756.
[9] N. Hungerbuhler: Quasilinear elliptic Systems in Divergence form with Weak Monotonicity. New York J. Math .5 (1999) 83-90.
[10] N. Hungerbuhler, F. Augsburger: Quasilinear elliptic Systems in Divergence form with Weak Monotonicity and nonlinear physical data. Electro. J. Diff. Vol. 2004(2004), No. 144, pp.1-18.
[11] N. Hungerbuhler: A refinement of Ball's Theorem on Young measures.New York J. Math. 3, 48-53 (1997)
[12] D. Kinderlehrer, P. Pedregal: Gradient Young measures generated by sequences in Sobolev spaces. J. Geom. Anal. 4 (1994), 59-90, MR 95f:49059.
[13] R. Landes, V. Mustonen: On pseudomonotone operators and nonlinear noncoer- cive variational problems on unbounded domains. Math. Ann. 248 (1980), 241-246, MR 81i:35057.
[14] J.L. Lions: Quelques Methodes de Resolution des Problemes aux Limites non Lineaires. Dunod, Gauthier-Villars, Paris 1969.
[15] G. J. Minty: Monotone (nonlinear) operators in Hilbert space, Duke Math. J. 29 (1962), 341-346.
[16] M. I. Visik: Quasi-linear strongly elliptic systems of differential equations of di- vergence form. (Russian) Trudy Moskov. Mat. Obsc. 12 (1963), 125-184.
El Houcine RAMI, Abdelkrim BARBARA, Elhoussine AZROUL, "Existence of a weak solution of some quasilinear elliptical system in a weighted Sobolev space," International Journal of Mathematics Trends and Technology (IJMTT), vol. 66, no. 2, pp. 15-36, 2020. Crossref, https://doi.org/10.14445/22315373/IJMTT-V66I2P503