Volume 66 | Issue 2 | Year 2020 | Article Id. IJMTT-V66I2P504 | DOI : https://doi.org/10.14445/22315373/IJMTT-V66I2P504
In this article the Generalized Bol loop structure and some useful results are discovered. It is based on Moufang loop’s definition and some basic results of diassociative algebra. Here, we proved that the Half-isomorphism of Generalized Bol loops.
[1] R. H. Bruck and L. J. Paige, Loops whose inner mappings are automorphisms, Ann. of Math. (2) 63 (1956) 308-323.
[2] R. Mansfield, A group determinant determines its group, Proc. Amer. Math. Soc.116 (1992), 939-941.
[3] W. W. McCune, Prover9 and Mace4, version 2009-11A. http://www.cs.unm.edu/ mccune/prover9/
[4] R. Moufang, ZurStruktur von Alternativkoerpern, Math. Ann. 110 (1935), 416-430.
[5] H. O. Pflugfelder, Quasigroups and Loops: Introduction, Sigma Series in Pure Math. 7, Heldermann, 1990
[6] W. R. Scott, Half-homomorphisms of groups, Proc. Amer. Math. Soc. 8 (1957), 1141-1144.
M.Gokila vani,S.K.Vijay Amrtha, S. Hingis, "Half-Isomorphism of Generalized Bol Loop," International Journal of Mathematics Trends and Technology (IJMTT), vol. 66, no. 2, pp. 37-41, 2020. Crossref, https://doi.org/10.14445/22315373/IJMTT-V66I2P504