Volume 66 | Issue 2 | Year 2020 | Article Id. IJMTT-V66I2P518 | DOI : https://doi.org/10.14445/22315373/IJMTT-V66I2P518
New upper bounds on spectral radius of Hadamard product of Hadmard powers of non-negative matrices are proposed.
[1] A.Berman and R.J.Plemmons., Non-negative matrices in the Mathematical Sciences, Academic Press, New York, 1979.
[2] L. Elsner,C. R. Johnson andJ.A. Dias Da Silva, The Perron root of a weighted geometric mean of nonnegative matrices, Linear and Multilinear Algebra, vol. 24, pp. 1-13, 1988.
[3] M. Z. Fang, Bounds on eigenvalues of the Hadamard product and the Fan product of matrices, Linear Algebra Appl., Vol. 425, pp. 7-15, 2007.
[4] M. Fiedler and T. L. Markham, An inequalityfor the Hadamard product of an M-matrix and inverse M-matrix, Linear Algebra Appl., Vol. 101, pp. 1-8, 1988.
[5] R. A. Horn and C. R. Johnson, Topics in Matrix Analysis, Cambridge University Press, Cambridge, 1985.
[6] Q. Liu, G. Chen and L. Zhao, Some new bounds on the spectral radius of matrices, Linear Algebra Appl., Vol. 432, pp. 936-948, 2010.
[7] R. S. Varga, Minimal Gerschgerin sets, Pac. J. Math.,Vol. 15, pp. 719-729, 1965.
[8] X. R. Yong and Z. Wang,On a conjecture of Fiedler and Markham, Linear Algebra Appl., vol. 288, pp. 259-267, 1999.
[9] L. Zhao, Two inequalities for the Hadamard product of matrices, Journal of inequalities and Appl., vol. 122, pp. 2-6, 2012.
Sharma Leena, Badshah V. H,Patel H. K, "On Hadamard Powers of Non-Negative Matrices," International Journal of Mathematics Trends and Technology (IJMTT), vol. 66, no. 2, pp. 148-154, 2020. Crossref, https://doi.org/10.14445/22315373/IJMTT-V66I2P518