Volume 66 | Issue 3 | Year 2020 | Article Id. IJMTT-V66I3P501 | DOI : https://doi.org/10.14445/22315373/IJMTT-V66I3P501
Let be a vector space and be a cone in , then is an ordered vector space. In this paper, we assumed the cone to be a reflexive cone and show that is an Archimedean space. Among other things, we also show that if an ordered Banach space with normal, generating and reflexive cone has a Riesz decomposition property, then is a Riesz space.
[1] Aliprantis, C. D., & Burkinshaw, O. (2003). Locally solid Riesz spaces with applications to economics (No. 105). American Mathematical Soc.
[2] Aliprantis, C. D., Cornet, B., & Tourky, R. (2002). Economic equilibrium: Optimality and price decentralization. Positivity, 6 (3), 205–241.
[3] Aliprantis, C. D., & Tourky, R. (2007). Cones and duality (Vol. 84). American Mathematical Soc.
[4] Casini, E., & Miglierina, E. (2010). Cones with bounded and unbounded bases and reflexivity. Nonlinear Analysis: Theory, Methods & Applications, 72 (5), 2356–2366.
[5] Casini, E., Miglierina, E., Polyrakis, I. A., & Xanthos, F. (2013). Reflexive cones. Positivity, 17 (3), 911–933.
[6] Göpfert, A., Riahi, H., Tammer, C., & Zalinescu, C. (2006). Variational methods in partially ordered spaces. Springer Science & Business Media.
[7] Jameson, G. (1970). Ordered linear spaces. In Ordered linear spaces (pp. 1–39). Springer, Berlin, Heidelberg.
[8] Polyrakis, I. A. (1986). Cones locally isomorphic to the positive cone of l1 (γ). Linear Algebra and its applications, 84 , 323–334.
[9] Polyrakis, I. A. (2001). Bases for cones and reflexivity. Quaestiones Mathematicae, 24 (2), 165–173.
[10] Zaanen, A. C. (2012). Introduction to operator theory in Riesz spaces. Springer Science & Business Media.
A.I. Garba, A. Yusuf, "On Vector Space Ordered by Reflexive Cones," International Journal of Mathematics Trends and Technology (IJMTT), vol. 66, no. 3, pp. 1-4, 2020. Crossref, https://doi.org/10.14445/22315373/IJMTT-V66I3P501