Volume 66 | Issue 3 | Year 2020 | Article Id. IJMTT-V66I3P502 | DOI : https://doi.org/10.14445/22315373/IJMTT-V66I3P502
A subset S of the vertex set V of a graph G is said to be independent, if no two vertices of S are adjacent. Independent functions and maximal independent functions have been defined and studied already. In this chapter, strong independent functions, maximal strong independent functions and basic maximal strong independent functions are defined and a study of these is made
[1] Acharya, B.D., The Strong Domination Number of a Graph and Related Concepts, J.Math. Phys. Sci., 14,471-475(1980).
[2] Allan R.B., and Laskar.R.C., On Domination and Independent Domination Number of a Graph, Dicrete Math., 23, 73-76(1978).
[3] Arumugam.S. and Regikumar.K., Basic Minimal Dominating Functions, Utilitas Mathematica, 77, pp. 235-247(2008).
[4] Arumugam.S. and Regikumar.K., Fractional Independence and Fractional Domination Chain in Graphs, AKCE J.Graphs Combin., 4, No.2, pp.161-169(2007).
[5] Arumugam.S. and Sithara Jerry.A., A Note On Independent Domination in Graphs, Bulletin of the Allahabad Mathematical Society, Volume 23, Part 1.(2008).
[6] Arumugam.S. and Sithara Jerry.A., Fractional Edge Domination in Graphs, Appl. Anal. Discrete Math.,(2009).
[7] Berge.C., Theory of Graphs and its Applications, Dunod, Paris(1958).
[8] Berge.C., Graphs and Hypergraphs, North-Holland, Amsterdam(1973).
[9] Cockayne E.J., Dawes R.M. and Hedetniemi.S.T., Total domination in graphs, Networks, 10, 211-219(1980).
[10] Cockayne E.J., Favaron O., Payan C. and Thomasaon A.G., Contributions to the theory of domination, independence and irredundance in graphs, Discrete Math., 33, 249-258(1981).
[11] Cockayne E.J., MacGillivray G. and Mynhardt C.M., Convexity of minimal dominating functions and universal in graphs, Bull. Inst. Combin. Appl., 5, 37-38(1992).
[12] Cockayne E.J. and Mynhardt C.M., Convexity of minimal dominating functions of trees: A survey, Quaestiones Math., 16, 301-317(1993).
[13] Cockayne E.J., MacGillivray G. and Mynhardt C.M., Convexity of minimal dominating functions of trees-II, Discrete Math., 125, 137-146(1994). 7
[14] Cockayne E.J. and Mynhardt C.M., A characterization of universal minimal total dominating functions in trees, Discrete Math., 141, 75-84(1995).
[15] Cockayne.E.J., Fricke.G., Hedetniemi.S.T. and Mynhardt.C.M., Properties of Minimal Dominating Functions of Graphs, Ars Combin., 41,107-115(1995).
[16] Cockayne E.J., MacGillivray G. and Mynhardt C.M., Convexity of minimal dominating functions of trees, Utilitas Mathematica, 48, 129-144(1995).
[17] Cockayne.E.J. and Hedetniemi.S.T., Towards a Theory of Domination in Graphs, Networks, 7,247-261(1977).
[18] Cockayne.E.J. and Mynhardt.C.M., Minimality and Convexity of dominating and related functions in Graphs, A unifying theory, Utilitas Mathematica, 51,145-163(1997).
[19] Cockayne.E.J. and Mynhardt.C.M. and Yu.B., Universal Minimal Total Dominating Functions in Graphs, Networks, 24, 83-90(1994).
[20] Grinstead D. and Slater P.J., Fractional Domination and Fractional Packing in Graphs, Congr., Numer., 71, 153-172(1990).
[21] Harary.F., Graph Theory, Addison-Wesley, Reading, Mass(1969).
[22] Hedetniemi.S.T. and Laskar.R.L., Bibliography on Domination in Graphs and Some Basic Definitions of Domination Parameters, Discrete Math., 86,pp 257-277(1990).
[23] Ore.O, Theory of Graphs, AMS(1962).
[24] Regikumar K., Dominating Functions - Ph.D thesis, Manonmaniam Sundaranar University(2004).
[25] Sampathkumar.E and Pushpa Latha.L., Strong Weak Domination and Domination Balance in a Graph, Discrete Math., 161,235- 242(1996).
[26] Scheinerman E.R. and Ullman D.H., Fractional Graph Theory: A rational approach to the theory of graphs, John Wiley and Sons Inc.,(1997).
[27] Terasa W. Haynes, Stephen T. Hedetneimi, Peter J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker Inc.,(1998).
[28] Terasa W. Haynes, Stephen T. Hedetneimi, Peter J. Slater, Domination in Graphs: Advanced Topics Marcel Dekker Inc., New York(1998).
[29] Yu.B., Convexity of Minimal Total Dominating Functions in Graphs, J.Graph Theory, 24,313-321(1997).
M. Kavitha, "Strong Independent Functions," International Journal of Mathematics Trends and Technology (IJMTT), vol. 66, no. 3, pp. 5-11, 2020. Crossref, https://doi.org/10.14445/22315373/IJMTT-V66I3P502