Volume 66 | Issue 3 | Year 2020 | Article Id. IJMTT-V66I3P511 | DOI : https://doi.org/10.14445/22315373/IJMTT-V66I3P511
Let G = (V,E) be a simple, finite, undirected and connected graph. A non-empty subset D V is a dominating set of G if every vertex in V-D is adjacent to atleast one vertex in D. The domination number is the minimum cardinality taken over all the minimal dominating sets of G. Let D be the minimum dominating set of G. If V-D contains a dominating set of G, then is an inverse dominating set with respect to D. The inverse domination number is the minimum cardinality of a minimal inverse dominating set of G. In this paper, the values of is obtained for some special graphs.
[1] Harary.F (1969) Graph Theory, Addison – Wesley Reading Mars.
[2] Haynes, T.W., Hedetniemi. S.T and Slater.P.J 1998a. Domination in Graphs. Advanced Topics, Marcel Dekker Inc. New York U.S.A.
[3] Haynes, T.W. Hedetniemi S.T and Slater. P.J 1998b. Fundamentals of domination in graphs, Marcel Dekkel Inc. New York, U.S.A.
[4] Ore, O. 1962 Theory of Graphs. American Mathematical Society colloq Publ., Providence, R1 38.
[5] Domke G.S., Dunbar J.E and Markus L.R (2007) The Inverse domination number of a graph, feb (2007).
[6] Kulli V.R and Sigarkanti S.C (1991). Inverse domination in graphs. National Academy Science Letters, 15.
[7] Paulraj Joseph.J and Arumugam S. (1995): Domination in graph, International Journal of Management Systems, 11 : 177-182.
[8] “THEORY OF DOMINATION IN GRAPHS ” by V.R. Kulli, Vishwa International Publications, Gulbarga India.
[9] T. Tamizh chelvam and G.S Grace Prema, “Equality of domination and inverse domination numbers,” Ars combinatorial, vol. 95, pp. 103-111, 2010.
[10] “ ADVANCES IN DOMINATION THEORY ” by V.R. Kulli is Vishwa International Publications, Gulbarga, India (2012).
M. Hoorulayeen, Dr. K. Ameenal Bibi, T. Aswini, "Inverse Domination of Some Special Graphs," International Journal of Mathematics Trends and Technology (IJMTT), vol. 66, no. 3, pp. 77-81, 2020. Crossref, https://doi.org/10.14445/22315373/IJMTT-V66I3P511