Volume 66 | Issue 3 | Year 2020 | Article Id. IJMTT-V66I3P513 | DOI : https://doi.org/10.14445/22315373/IJMTT-V66I3P513
A dominating set D of G which is also a resolving set of G is called a metro dominating set. A metro dominating set D of a graph G(V,E) is a unique metro dominating set (in short an UMD-set) if |N(v)∩D|=1 for each vertex 𝑣 ∈ 𝑉 − 𝐷 and the minimum cardinality of an UMD-set of G is the unique metro domination number of G denoted by 𝛾𝜇𝛽(𝐺). In this paper, we determine unique metro domination number of 𝑃𝑛 3 graphs.
[1] T. W. Haynes, S. T. Hedetniemi and P. J. Slater, Fundamentals of Dominations in Graphs, Marcel Dekker, New York (1998)
[2] Gary Chartrand, Linda Eroh, Mark A. Johnson and Ortrud R.Oellermann. Resolvability in graphs and the metric dimension of a graph. Discrete Appl. Math., 105(1-3)(2000) 99-113.
[3] Harary F, Melter R.A., On the Metric dimention of a graph, Ars Combinatoria 2 (1976) 191-195
[4] S. Kuller, B. Raghavachari and A. Rosenfied, Land marks ingraphs, Disc. Appl. Math.70 (1996) 217-229
[5] C. Poisson and P. Zhang, The metric dimension of unicyclicgraphs, J. Comb. Math Comb. Compu. 40 (2002) 17-32.
[6] P. J. Slater, Domination and location in acyclic graphs, Networks17 (1987) 55-64
[7] P. J. Slater, Locating dominating sets, in Y. Alavi and A. Schwenk,editors, Graph Theory, Combinatorics, and Applications, Proc.Seventh Quad International Conference on the theory and appli-cations of Graphs. John Wiley & Sons, Inc. (1995) 1073-1079
[8] B. Sooryanarayana and John Sherra, Unique metro domination in graphs,Adv Appl Dis- crete Math.,Vol 14(2), (2014),
[9] H.B.Walikar, Kishori P. Narayankar and Shailaja S. Shirakol, The Number of Minimum Dominating Sets in Pn X P2, International J.Math. Combin. Vol.3 (2010), 17-21.
[10] B. Sooryanarayana and John Sherra, Unique Metro Domination Number of Circulant Graphs,International J.Math. Combin.Vol.1(2019), 53-61
Kishori P. Narayankar, Denzil Jason Saldanha, John Sherra, "Unique Metro Domination of Cube of Paths," International Journal of Mathematics Trends and Technology (IJMTT), vol. 66, no. 3, pp. 90-91, 2020. Crossref, https://doi.org/10.14445/22315373/IJMTT-V66I3P513