Volume 66 | Issue 3 | Year 2020 | Article Id. IJMTT-V66I3P514 | DOI : https://doi.org/10.14445/22315373/IJMTT-V66I3P514
Chii-Huei Yu, "A Study of Some Fractional Functions," International Journal of Mathematics Trends and Technology (IJMTT), vol. 66, no. 3, pp. 92-98, 2020. Crossref, https://doi.org/10.14445/22315373/IJMTT-V66I3P514
[1] J. T. Machado, V. Kiryakova, F. Mainardi, “Recent history of fractional calculus,” Communications in Nonlinear Science and Numerical Simulation, 2011, 16, p. 1140–1153.
[2] I. Podlubny, “Fractional differential equations”, Mathematics in Science and Engineering, Academic Press, San Diego, California, USA. 1999; 198.
[3] K. S. Miller, B. Ross, “An introduction to the fractional calculus and fractional differential equations”, John Wiley & Sons, New York, NY, USA, 1993.
[4] K. Diethelm, “The analysis of fractional differential equations”, Springer-Verlag, 2010.
[5] S. Das, “Functional fractional calculus”, 2nd Edition, Springer-Verlag, 2011.
[6] J. C. Prajapati, “Certain properties of Mittag-Leffler function with argument xa, a>0",Italian Journal of Pure and Applied Mathematics, 2013, 30, p. 411−416.
[7] U. Ghosh, S. Sengupta, S. Sarkar and S. Das, “ Analytic solution of linear fractional differential equation with Jumarie derivative in term of Mittag-Leffler function”, American Journal of Mathematical Analysis, 2015, 3(2), p. 32-38.
[8] C. -H. Yu, “Fractional derivatives of some fractional functions and their applications”, Asian Journal of Applied Science and Technology, 2020, 4(1), p. 147-158.
[9] U. Ghosh, S. Sarkar, S. Das, “Fractional Weierstrass function by application of Jumarie fractional trigonometric functions and its analysis”, Advances in Pure Mathematics, 2015, 5, p. 717-732.