Volume 66 | Issue 4 | Year 2020 | Article Id. IJMTT-V66I4P515 | DOI : https://doi.org/10.14445/22315373/IJMTT-V66I4P515
In this paper, an improved estimator for variance has been proposed to improvise the log-type estimators proposed by Kumari (2019). These classes of estimators provide a better alternative to the classes of estimators provided by Kumari (2019) as well as to some other commonly used estimators available in literature. A numerical study is included to support the use of the suggested classes of estimators.
[1] Bhushan, S. and Kumari, C. (2018). A new log type estimators for estimating the popu- lation variance, International Journal of Computational and Applied Mathematics (ISSN 1819-4966), 13 (1), 43-54.
[2] Bhushan, S. and Kumari, C. (2018). A Class of Double Sampling Log-Type Estimators for Population Variance Using Two Auxiliary Variable, International Journal of Applied Engineering Research, Volume 13, Number (13) 2018, pg 11151-11155.
[3] Bhushan, S. and Kumari, C. (2018). Some Classes of Log Type Estimators Using Auxiliary Attribute for Population Variance, International Journal of Scientific and Engineering Research, Volume 9, Issue 6, pg 1823-1832.
[4] Bhushan, S. and Kumari, C. (2018). Estimation of Variance of Finite Population Using Double Sampling Scheme, International Journal of Scientific and Engineering Research, Volume 9, Issue 8, pg 1893-1901.
[5] Kumari, C., Bhushan, S. and Thakur, R. K. (2018). Modied Ratio Estimators Using Two Auxiliary Information for Estimating Population Variance in Two-Phase Sampling, International Journal of Scientific and Engineering Research, Volume 9, Issue 8, pg 1884- 1892.
[6] Kumari, C., Bhushan, S. And Thakur, R. K. (2019). Optimal Two Parameter Logarithmic Estimators for Estimating the Population Variance, Global Journal of Pure and Applied Mathematics, Volume 15, Issue 5, pg 527-237.
[7] Bhushan, S. and Kumari, C (2019). Double Sampling Log-type Estimator Using Auxiliary Attribute for Population Variance, Journal of Statistics Applications & Probability, 6, No. 3, pg 1-6
[8] Kadilar C. and Cingi H. (2006a). Improvement in variance estimation using auxiliary information, Hacet. J. Math. Stat., 1(35), 111-115.
[9] Kadilar C. and Cingi H. (2006b). Ratio estimators for population variance in simple and stratied sampling, App. Math. Comp., 1(73), 1047-1058.
[10] Kadilar C. and Cingi H. (2014). A two parameter variance estimator using auxiliary information, App. Math. Comp., 117-122.
[11] Hidiroglou M. A. and Sarndal C. E. (1998). Use of auxiliary information for two-phase sampling , Surv. Methodol., 24(1), 11-20. 7
[12] Swain A. K. P. C. and Mishra G. (1994). Estimation of population variance under unequal probability sampling , Sankhya, B (56), 374-384.
[13] Bahl S. and Tuteja R. K. (1991). Ratio and Product type exponential estimator, Info. Optim. Sci., XII(I), 159-163.
[14] Sukhatme P. V., Sukhatme B. V., Sukhatme S. and Ashok C. (1984). Sampling Theory of Surveys with Applications , Iowa State Univ. Press, Ames.
[15] Isaki C. T. (1983). Variance estimation using Auxiliary Information , J. Amer. Stat. Asso., 78, 117-123.
[16] Chaudhury A. (1978). On estimating the variance of a finite population. Metrika, 25, 66-67.
[17] Das A. K. and Tripathi T. P. (1978). Use of auxiliary information in estimating the nite population variance. Sankhya, C(4), 139-148.
[18] Cochran W. G. (1963). Sampling Techniques , Wiley Eastern Private Limited, New Delhi.
[19] Neyman J. (1938). Contribution to the theory of sampling human populations, J. Amer. Stat. Asso., 33, 101-116.
[20] Cebrian A. A. and Garcia R. M. (1997). Variance estimation using auxiliary information : an almost multivariate ratio estimator, Metrika, 45, 171-178.
[21] Garcia R. M. and Cebrian A. A. (1996). Repeat substitution method: the ratio estimator for population variance, Metrika, 43, 101-105.
[22] Upadhaya L. N. and Singh H. P. (2001). Estimation of the population standard deviation using auxiliary information, Ame. J. Math. Manag. Sci., 21, 345-385.
[23] Searls D. T. (1964). Utilization of known coecient of kurtosis in the estimation procedure of variance, J. Amer. Stat. Assoc., 59, 1125-1226.
[24] Prasad B. and Singh H. P. (1992).Unbiased estimators of nite population variance using auxiliary information sample surveys, Commun. Stat. : Theory and Methods, 21(5), 1367- 1376. 8
Chandni Kumari, Ratan Kumar Thakur, "A FAMILY OF LOGARITHMIC ESTIMATORS FOR POPULATION VARIANCE UNDER DOUBLE SAMPLING," International Journal of Mathematics Trends and Technology (IJMTT), vol. 66, no. 4, pp. 99-105, 2020. Crossref, https://doi.org/10.14445/22315373/IJMTT-V66I4P515