Volume 66 | Issue 4 | Year 2020 | Article Id. IJMTT-V66I4P524 | DOI : https://doi.org/10.14445/22315373/IJMTT-V66I4P524
G.Selin Savaşkan, Aykut Or, "The Cournot Model of Duopoly and Interval Matrix Games," International Journal of Mathematics Trends and Technology (IJMTT), vol. 66, no. 4, pp. 211-216, 2020. Crossref, https://doi.org/10.14445/22315373/IJMTT-V66I4P524
[1] R. Amir, Cournot Oligopoly and the Theory of Supermodular Games, Games and Economic Behavior. 15: 132-148, 1996.
[2] A. S. Chuang, F. Wu and P. Varaiya, A game-theoretic model for generation expansion planning: problem formulation and numeracal comparisons. IEEE Transaction on Power Systems, 16(4): 885-891, 2001.
[3] A. Cournot, Researches Into the Mathematical Principles of the Theory of Wealth, New York: Macmillan.Translated by Nathaniel Bacon, 1897.
[4] W. D. Collins and C. Hu, Fuzzily determined interval matrix games, In: Proc. BISCSE 05, University of California, Berkeley, 2005.
[5] W. D. Collins and C. Hu, Studying interval valued matrix games with fuzzy logic, Soft Computing, 12 (2), 147-155, 2008.
[6] M. S. Chiou, P. Y. Ho and H. Y. Li, Adsorption of anionic dyes in acid solutions using chemically cross-linked chitosan beads, Dyes and Pigments 60(1):69-84, 2004.
[7] R. A. Dana, L. Mantrucchio, Dynamic complexity in duopoly games, J.Econ.Theory 40, 40-56, 1986.
[8] A. A. Elsadany, Dynamic of a Cournot duopoly game with bounded rationality based on relative profit maximization, Applied Mathematics and Computation 294, 253-263, 2017.
[9] T. S. Ferguson, Game Theory, In: Ferguson T. S., Two-Person General Sum Games (Part-III), 2008.
[10] D. Furth, Stability and instability in oligopoly, J. Econ. Theory, 40: 197-228, 1986.
[11] R. Gibbons, Game Theory for Applied Economists, Princeton University Press, p.14-21. Princeton, New Jersey, 1992.
[12] R. J. Leonard, Reading Cournot, reading Nash: the creation and stabilisation of the Nash equilibrium, Economic Journal 104, 492-511, 1994.
[13] R. E. Moore, Methods and Applications of Interval Analysis, SIAM, Philadelphia, USA, 1979.
[14] P. K. Nayak, M. Pal, Solution of rectangular interval games using graphical method, Tamsui Oxford Journal of Mathematical Sciences, 22 (1), 95-115, 2006.
[15] J. V. Neumann, O. Morgenstern, Theory of Games and Economic Behavior, Princeton University Press, Princeton, NJ, USA, 1944.
[16] G. Owen, Game Theory., Academic Press. Inc. 1-85, 1995.
[17] T. Puu, Complex Dynamics with three oligopolists, Chaos Solutions Fractals 12, 207-581, 1996.
[18] T. Puu, On the stability of Cournot equilibrium when the number of competitors increases, J. Econ. Behav. Org., 66, 445-456, 2007.
[19] D. Ran, Exotic phenomena in games and duopoly models, J.Math. Econ. 5, 173-184, 1978.
[20] A. Sengupta, T. K. Pal, Ø-index for ordering interval numbers, Presented in Indian Science Congress, Delhi University, 1997.
[21] A. Sengupta, T. K. Pal and D. Chakraborty, Interpretation of inequality constraints involving interval coefficients and a solution to interval linear programming. Fuzzy Sets and Systems 119(1), 129-138, 2001.