Volume 66 | Issue 5 | Year 2020 | Article Id. IJMTT-V66I5P503 | DOI : https://doi.org/10.14445/22315373/IJMTT-V66I5P503
SU Xiao-ya, ZHAIYan-hui, "Stability And Hopf Branch of A Predator-prey Model with Two Time Delays And Refuges Effect," International Journal of Mathematics Trends and Technology (IJMTT), vol. 66, no. 5, pp. 12-31, 2020. Crossref, https://doi.org/10.14445/22315373/IJMTT-V66I5P503
[1] FARIA T. Stability and Bifurcation for a Delayed Predator-prey Model and the Effect of Diffusion[J]. Journal of Mathematical Analysis and Applications,2001,254(4):433-643.
[2] CELIK C. The Stability and Hopf Bifurcation for a Predator-prey System with Time Delay[J]. Chaos,Solitons and Fractals,2008,37(1):87-99.
[3] CELIK C. Hopf Bifurcation of a Ratio-dependent Predator-prey System with Time Delay[J]. Chaos,Solitons and Fractals,2009,42(3):1474-1484.
[4] YUAN S. SONG Y. Stability and Hopf Bifurcation in a Delayed Leslie-Gower Predator-prey System[J]. Journal of Mathematical Analysis and Applications.2009.355(1):82-100.
[5] MA Y. Global Hopf Bifurcation in the Leslie-Gower Predator-preyModel with Two Delays[J]. Nonlinear Analysis:Real World Application,2012,13(1):370-375.
[6] CHEN Y. ZHANG F. Dynamics of a Delayed Predator-preyModel with Predator Migration[J]. Applied Mathematical Modelling,2013,37(3):1400-1412.
[7] B.D.Hassard,N.D.Kazarinoff ,Y.H.Wan,Theory and Applications of Hopf Bifurcations,Cambridge University Press,Cambridge.1981.