Volume 66 | Issue 5 | Year 2020 | Article Id. IJMTT-V66I5P525 | DOI : https://doi.org/10.14445/22315373/IJMTT-V66I5P525
A set D of vertices is a dominating set of G if every vertex not in D is adjacent to at least one member of D. A set D of vertices is said to be dom-chromatic if D is a dominating set and X(
[1] S. Balamurugan, A study on chromatic strong domination in graphs, Ph.D Thesis, Madurai Kamaraj University, India 2008.
[2] P. Dankelmann, D. Rautenbach and L. Volkmann, Weighted Domination, 2004.
[3] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, W. H. Freeman, 1979.
[4] F. Harary, Graph Theory, (Addison Wesley, Reading, Mass 1972).
[5] T. W. Haynes, S. Hedetniemi and P. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, Inc., New York, 1998.
[6] T. W. Haynes, S. Hedetniemi and P. Slater, Domination in Graphs : Advanced Topics, Marcel Dekker, Inc., New York, 1997.
[7] P.J. Heawood Map color theorems, Quart. J. Math., 24(1890), 332- 338.
[8] T.N. Janakiraman, N. Poopalaranjani, On Some Coloring and Domination Parameters in Graphs, Ph. D Thesis, Bharathidasan Uni- versity, India 2006.
[9] A. B. Kempe, On the geographical problem of four colors, Amer. J. Math., 2(1879), 193-204. 11
[10] Min-Jen Jou and Jenq-Jong Lin, Algorithms for Weighted Dom- ination Number and Weighted Independent Domination Number of a Tree, Int. Journal of Cont. Math. Sci., 13 (2018), 133 - 140. https://doi.org/10.12988/ijcms.2018.8413
[11] O. Ore, Theory of Graphs, Amer. Math. Soc. Transl., Vol. 38, Collo- quium Publications, 1962, 206-212. https://doi.org/10.1090/coll/038.
[12] P. Palanikumar and S. Balamurugan, Weighted dom-chromatic number of a Tree, J. Pure & Appl. Math., Submitted.
P. Palanikumar, S. Balamurugan, "Weighted dom-chromatic number of some classes of Type-I weighted caterpillars," International Journal of Mathematics Trends and Technology (IJMTT), vol. 66, no. 5, pp. 180-191, 2020. Crossref, https://doi.org/10.14445/22315373/IJMTT-V66I5P525