...

  • Home
  • Articles
    • Current Issue
    • Archives
  • Authors
    • Author Guidelines
    • Policies
    • Downloads
  • Editors
  • Reviewers
...

International Journal of Mathematics Trends and Technology

Research Article | Open Access | Download PDF

Volume 66 | Issue 5 | Year 2020 | Article Id. IJMTT-V66I5P527 | DOI : https://doi.org/10.14445/22315373/IJMTT-V66I5P527

Weighted dom-chromatic number of Type-I weighted complete caterpillars


P. Palanikumar, S. Balamurugan
Abstract

A set D of vertices is a dominating set of G if every vertex not in D is adjacent to at least one member of D. A set D of vertices is said to be dom-chromatic if D is a dominating set and X()= X(G). A weighted tree, (T,w) a tree together with a positive weight function on the vertex set w : V(T)->R+. The weighted domination number γw(T) of (T,w) is the minimum weight w(D) = ΣvεD w(v) of a dominating set D of T. The weighted dom-chromatic number γwch(T) of (T,w) is the minimum weight w(D) = ΣvεD w(v) of a dom-chromatic set D of T. A Caterpillar is a graph which can be obtained from the path on n vertices by appending xi pendant vertices to the ith vertex of the path, Pn. The caterpillar with parameters n,x1,x2,.....,xn will be denoted as Pn(x1,x2,...,xn). In this paper, the weighted dom-chromatic numbers are determined for some Type-I weighted complete caterpillars.

Keywords
dominating set, dom-chromatic set, weighted domination, weighted dom-chromatic number, Type-I weighted labeling
References

[1] S. Balamurugan, A study on chromatic strong domination in graphs, Ph.D Thesis, Madurai Kamaraj University, India 2008.
[2] C. Berge, Theory of graphs and its applications, Dunod, Paris, 1958.
[3] P. Dankelmann, D. Rautenbach and L. Volkmann, Weighted Domination, 2004.
[4] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, W. H. Freeman, 1979.
[5] F. Harary, Graph Theory, (Addison Wesley, Reading, Mass 1972).
[6] T. W. Haynes, S. Hedetniemi and P. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, Inc., New York, 1998.
[7] T. W. Haynes, S. Hedetniemi and P. Slater, Domination in Graphs : Advanced Topics, Marcel Dekker, Inc., New York, 1997.
[8] P.J. Heawood Map color theorems, Quart. J. Math., 24(1890), 332- 338.
[9] T.N. Janakiraman, N. Poopalaranjani, On Some Coloring and Domination Parameters in Graphs, Ph. D Thesis, Bharathidasan Uni- versity, India 2006.
[10] A. B. Kempe, On the geographical problem of four colors, Amer. J. Math., 2(1879), 193-204.
[11] Min-Jen Jou and Jenq-Jong Lin, Algorithms for Weighted Dom- ination Number and Weighted Independent Domination Number of a Tree, Int. Journal of Cont. Math. Sci., 13 (2018), 133 - 140. https://doi.org/10.12988/ijcms.2018.8413
[12] O. Ore, Theory of Graphs, Amer. Math. Soc. Transl., Vol. 38, Collo- quium Publications, 1962, 206-212. https://doi.org/10.1090/coll/038.
[13] P. Palanikumar and S. Balamurugan, Weighted dom-chromatic number of a Tree, J. Pure & Appl. Math., Submitted.
[14] P. Palanikumar and S. Balamurugan, Weighted dom-chromatic number of some classes of Type-I weighted caterpillars, Int. J. of Math- ematics Trends and Technology, Submitted. 7

Citation :

P. Palanikumar, S. Balamurugan, "Weighted dom-chromatic number of Type-I weighted complete caterpillars," International Journal of Mathematics Trends and Technology (IJMTT), vol. 66, no. 5, pp. 195-201, 2020. Crossref, https://doi.org/10.14445/22315373/IJMTT-V66I5P527

  • PDF
  • Abstract
  • Keywords
  • References
  • Citation
Abstract Keywords References Citation
  • Home
  • Authors Guidelines
  • Paper Submission
  • APC
  • Archives
  • Downloads
  • Open Access
  • Publication Ethics
  • Copyrights Infringement
  • Journals
  • FAQ
  • Contact Us

Follow Us

Copyright © 2025 Seventh Sense Research Group® . All Rights Reserved