Volume 66 | Issue 5 | Year 2020 | Article Id. IJMTT-V66I5P529 | DOI : https://doi.org/10.14445/22315373/IJMTT-V66I5P529
A set D of vertices is a dominating set of G if every vertex not in D is adjacent to at least one member of D. A set D of vertices is said to be dom-chromatic if D is a dominating set and X(
[1] S. Balamurugan, A study on chromatic strong domination in graphs, Ph.D Thesis, Madurai Kamaraj University, India 2008.
[2] I. Broere, J.H. Hattingh, M.A. Henning and A.A. Mc Rae, Majority dominating functions in graphs, Discrete Math, 138(1995), 125-135.
[3] P. Dankelmann, D. Rautenbach and L. Volkmann, Weighted Domination, 2004.
[4] J.E. Dunbar, S.T. Hedetniemi, M.A. Henning and A. McRae, Minus domination in graphs, Discrete Math., 199(1999), 35-47.
[5] J.E. Dunbar, S.T. Hedetniemi, M.A. Henning and P.J. Slater, Signed domination in graphs, Graph theory combinatorics and algorithms, 1(1995), 311-321.
[6] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, W. H. Freeman, 1979.
[7] F. Harary, Graph Theory, (Addison Wesley, Reading, Mass 1972).
[8] T. W. Haynes, S. Hedetniemi and P. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, Inc., New York, 1998.
[9] T. W. Haynes, S. Hedetniemi and P. Slater, Domination in Graphs : Advanced Topics, Marcel Dekker, Inc., New York, 1997.
[10] P.J. Heawood Map color theorems, Quart. J. Math., 24(1890), 332- 338.
[11] T.N. Janakiraman, N. Poopalaranjani, On Some Coloring and Domination Parameters in Graphs, Ph. D Thesis, Bharathidasan University, India 2006.
[12] A. B. Kempe, On the geographical problem of four colors, Amer. J. Math., 2(1879), 193-204.
[13] Min-Jen Jou and Jenq-Jong Lin, Algorithms for Weighted Dom- ination Number and Weighted Independent Domination Number of a Tree, Int. Journal of Cont. Math. Sci., 13 (2018), 133 - 140. https://doi.org/10.12988/ijcms.2018.8413
[14] O. Ore, Theory of Graphs, Amer. Math. Soc. Transl., Vol. 38, Colloquium Publications, 1962, 206-212. https://doi.org/10.1090/coll/038.
[15] P. Palanikumar and S. Balamurugan, Weighted dom-chromatic number of a Tree, J. Pure & Appl. Math., Submitted.
[16] P. Palanikumar and S. Balamurugan, Weighted dom-chromatic number of some classes of Type-I weighted caterpillars, Int. J. of Mathematics Trends and Technology, Submitted.
[17] P. Palanikumar and S. Balamurugan, Weighted dom-chromatic number of Type-I weighted complete caterpillars, Int. J. of Mathematics Trends and Technology, Submitted.
P. Palanikumar, S. Balamurugan, "Weighted dom-chromatic number of Type-II weighted paths," International Journal of Mathematics Trends and Technology (IJMTT), vol. 66, no. 5, pp. 207-218, 2020. Crossref, https://doi.org/10.14445/22315373/IJMTT-V66I5P529