Volume 66 | Issue 5 | Year 2020 | Article Id. IJMTT-V66I5P530 | DOI : https://doi.org/10.14445/22315373/IJMTT-V66I5P530
Ejinkonye Ifeoma O, "The Expression of Large Amplitude Wave equations using Homotopy Analysis Method," International Journal of Mathematics Trends and Technology (IJMTT), vol. 66, no. 5, pp. 219-226, 2020. Crossref, https://doi.org/10.14445/22315373/IJMTT-V66I5P530
[1] Dysthe, K., Krogstad, H.E., and Muller, P.,Oceanic Rogue Waves; Annu. Rev. Fluid Mech. (2008)Vol. 40:287-310.
[2] Lawton, G.,; Monsters of deep sea. New scientist (2001)170,(2297); 28-32.
[3] Lavrenov, I.V., and Porubor, A.V., Three reasons for freak wave generation in the non uniform current. Eur J. Mech B/fluids, vol.25 pp574-585.
[4] White, B.S., Fornberg B.,(1998); On the chance of freak waves at the sea, J. Fluid Mech. (2006) Vol. 255 PP 113-138
[5] Brown, M.G.,); The Meslov integral representation of slowly varying dispersive wavetrains in inhomogeneous moving media, Waves motion, (2000 Vol.32; 247-266.
[6] Brown, M.G.,;Space-time surface gravity waves caustics; structurally stable extreme wave events, Wave motion (2001) Vol. 33; 117-143.
[7] Lavrenov, I.V.,; The wave energy concentration at the Agulhas current of South Africa. Hazard (1998) Vol. 17; 171-177.
[8] Arena, F, and Fedele, F “Nonlinear Space-Time Evolution of wave Groups with a Hight Crest J. of Offshore Mech. And Arctic Eng(2005).Vol 127 pp 46-51
[9] Fedele, F., and Arena, F., “Weakly Nonlinear Statistics of High random waves” Phys fluids (2005).Vol 17 pp 0266 07-1610
[10] Fedele, F. “Extreme Events in Nonlinear Random Seas”. J.A Offshore Mech. And Arctic Eng (2006). Vol 128 pp 11-16
[11] Ejinkonye, I. O. and Ifidon, E.O., The Higher Order effects of the Rogue wave events. ABACUS (2013)pp 141-155, Vol. 40 No. 2
[12] Ejinkonye I.O. The effect of interaction of Large Amplitude wave on sea with its Application.ScientiaAfricana (2019) Vol. 18 No.1 pp 59-69
[13] Liao, S. J. Proposed homotopy analysis techniques for the solution of nonlinear problems.PhD thesis, Shanghai Jiao Tong University. 1992
[14] Liao, S. J. An approximate solution technique which does not depend upon small parameters (2): an application in fluid mechanics. Intl J. Non-Linear Mech. 1997 Vol. 32, 815–822.
[15] Liao, S. J.. Beyond Perturbation: Introduction to the Homotopy Analysis Method. Chapman & Hall, CRC, Boca Raton. (2003)
[16] Liao, S. J. On the homotopy analysis method for nonlinear problems.Appl. MathsComput.(2004) Vol.147, 499–513.
[17] Liao, S. J. On the homotopy multiple-variable method and its applications in the interactions of nonlinear gravity waves.Commun.Nonlinear Sci. Numer.Simul.(2011) Vol.16 (3), 1274–1303.
[18] Liao, S. J. Homotopy Analysis Method in Nonlinear Differential Equations. Springer & Higher Education.(2012)