Volume 66 | Issue 6 | Year 2020 | Article Id. IJMTT-V66I6P514 | DOI : https://doi.org/10.14445/22315373/IJMTT-V66I6P514
In this paper, the author finds the coefficient bounds and Teoplitz determinants of Generalized distribution function involving Jackson’s q-derivative operator using the subordination principle.
[1] H. Aldweby, and M. Darus. A subclass of Harmonic univalent functions associated with q-analogue of Dziok-strivastara operator ISRN. Math anal. 10, 382312, 2013.
[2] M. Aydogan, Y. Kahramaner and Y. Polatoglu. Close-to convex functions defined by fractional operator. Appl math sci, 7, (2013) 2769 – 2775.
[3] E. H. Doha. The first and second kind chebysher coefficients of the moments of the general order derivative of an infinitely differentiable function. Int. J. Comput. Math. 51, (1994) 21 – 25.
[4] O. A. Fadipe-Joseph, A. T. Oladipo and Ezeafulukwe. Modified Sigmoid function in univalent functions theory. Int. Journal of Mathematics, Sciences and Engineering Application, 7(7), (2003) 313-317.
[5] F. H. Jackson. On q-functions and a certain difference operator. Trans Royal Soc, Edinburgh, 46, (1908) 253 – 281.
[6] J. C. Mason. Chebysher polynomials approximations for the membrane Eigen value problem. SIAM J. Appl Math. 15, (1967) 172 – 186.
[7] J. W. Noonan and D. K. Thomas. On the second Hankel determinant of a really mean p-valent functions. Trans Amer. Math. Soc. 223, (1976) 337 – 346.
[8] A. T. Oladipo. Bonds for probabilities of the Generalized distribution defined by Generalized poly logarithm. Punjab University Journal of of Mathematics, 51(7). (2019)
[9] A. T. Oladipo Generalized Distribution Associated with Univalent functions in Conical domain. Analele Universitatii Oradea Fasc. Mathematica, 1, (2019) 163-169.
[10] H. E. Ozkan. Coefficient inequalities for q-starlike functions, Applied Math Comp. 276, (2016) 122 – 126.
[11] M. N. M. Pauzi, M. Darius and S. Siregar. Second and third Hankel determinants for a class defined by Generalized Polylogarithm functions. TJMM. 10(1), (2018) 31-41.
[12] Y. Polatoglu. Growth and distortion theorems for generalized q-starlike functions. Adv. Math Sci. J. 5, (2016) 7 – 12.
[13] C. H. Pommereke. On the Hankel determinant of Univalent functions. Mathematika, 14, (1966a) 108 – 112.
[14] C. H. Pominereke. On the Coefficients and Hankel determinants of Univalent functions. Journal of London Math. Soc. 41, (1966b) 111-122.
[15] S. Porwal. Generalized distribution and its geometric properties associated with univalent functions. Journal of Complex Analysis. Volume 2018, Article ID 8654506. http://doi.org/10.1155/2018/8654505, 5pp.
[16] K. Ramachandran and D. Kavitha. Teoplitz determinant for some subclasses of Analytic function. Global Journal of Pure and Applied Mathematics, 13(2), (2017) 785 – 793.
[17] D. K. Thomas and S. Abduhalim. Teoplitz Matrices and close-to-convex functions. Malays Math. Sci. Soc., (2016) 193 – 217.
[18] Y. Ke, and L. Henglim. Every matrix is a product of Teoplitz matrices. Foundations of Computational Mathematics. 16(3), (2016) 577 – 598.
[19] Wikipedia. Teoplitz matrix. Retrieved on 12th January, 2019.
Andrew Ojo FADARE, "Teoplitz Determinant For A Subclass of Generalized Distribution Function Involving Jackson’s Derivative Operator Through Chebyshev Polynomials," International Journal of Mathematics Trends and Technology (IJMTT), vol. 66, no. 6, pp. 129-145, 2020. Crossref, https://doi.org/10.14445/22315373/IJMTT-V66I6P514