Volume 66 | Issue 6 | Year 2020 | Article Id. IJMTT-V66I6P515 | DOI : https://doi.org/10.14445/22315373/IJMTT-V66I6P515
Objective. Reconciling locality and non-locality in accordance with Einstein’s general theory of relativity appears to be more than only a hopeless endeavour. Theoretically this seems either not necessary or almost impossible. Methods. The usual tensor calculus rules were used. The proof method modus ponens was used to proof the theorems derived. Results. A tensor of locality and a tensor of non-locality is derived from Riemannian curvature tensor. Einstein’s field equations were reformulated in terms of the tensor of locality and the tensor of non-locality without any contradiction, without changing Einstein’s field equations at all and without adding anything new to Einstein’s field equations. Weyl’s curvature tensor does not model non-locality sufficiently well under any circumstances. Under conditions of the general theory of relativity, it is more appropriate and straightforward to use the nonlocality curvature tensor which is part of the Riemannian curvature tensor to describe non-locality completely. Conclusions. The view is justified that there is no contradiction at all between Einstein’s field equations and the concept of locality and non-locality.
[1] I. Newton, Philosophiae naturalis principia mathematica. Londini: Jussu Societatis Regiae ac Typis Josephi Streater. Prostat apud plures bibliopolas, 1687.
[2] A. Einstein, “Zur Elektrodynamik bewegter Körper,” Ann. Phys., vol. 322, no. 10, pp. 891–921, 1905, doi: 10.1002/andp.19053221004.
[3] I. Barukčić, “The Equivalence of Time and Gravitational Field,” Phys. Procedia, vol. 22, pp. 56–62, Jan. 2011, doi: 10.1016/j.phpro.2011.11.008.
[4] A. Einstein, “Die Feldgleichungen der Gravitation,” Sitzungsberichte K. Preußischen Akad. Wiss. Berl. Seite 844-847, 1915, Accessed: Feb. 12, 2019. [Online]. Available: http://adsabs.harvard.edu/abs/1915SPAW.......844E.
[5] A. Einstein, “Die Grundlage der allgemeinen Relativitätstheorie,” Ann. Phys., vol. 354, pp. 769–822, 1916, doi: 10.1002/andp.19163540702.
[6] A. Einstein, “Kosmologische Betrachtungen zur allgemeinen Relativitätstheorie,” Sitzungsberichte K. Preußischen Akad. Wiss. Berl. Seite 142-152, 1917, Accessed: Feb. 12, 2019. [Online]. Available: http://adsabs.harvard.edu/abs/1917SPAW.......142E.
[7] H. F. M. Goenner, “On the History of Unified Field Theories,” Living Rev. Relativ., vol. 7, no. 1, 2004, doi: 10.12942/lrr-2004-2.
[8] A. Einstein, “On the Generalized Theory of Gravitation,” Sci. Am., vol. 182, pp. 13–17, Apr. 1950, doi: 10.1038/scientificamerican0450-13.
[9] A. Einstein and W. de Sitter, “On the Relation between the Expansion and the Mean Density of the Universe,” Proc. Natl. Acad. Sci. U. S. A., vol. 18, no. 3, pp. 213–214, Mar. 1932, Accessed: Feb. 12, 2019. [Online]. Available: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1076193/.
[10] J. Thmoson, “Joint eclipse meeting of the Royal Society and the Royal Astronomical Society,” The Observatory, vol. 42, no. 545, pp. 89–398, 1919, [Online]. Available: http://articles.adsabs.harvard.edu/cgibin/ t2png?bg=%23FFFFFF&/seri/Obs../0042/600/0000389.000&db_key=AST&bits=4&res=100&filetype=.gif.
[11] M. M. G. Ricci and T. Levi-Civita, “Méthodes de calcul différentiel absolu et leurs applications,” Math. Ann., vol. 54, no. 1, pp. 125– 201, Mar. 1900, doi: 10.1007/BF01454201.
[12] I. Barukčić, “Anti Einstein – Refutation of Einstein’s General Theory of Relativity,” Int. J. Appl. Phys. Math., vol. 5, no. 1, pp. 18– 28, 2015, doi: 10.17706/ijapm.2015.5.1.18-28.
[13] D. Lovelock, “The Einstein Tensor and Its Generalizations,” J. Math. Phys., vol. 12, no. 3, pp. 498–501, Mar. 1971, doi: 10.1063/1.1665613.
[14] I. Barukčić, “Unified Field Theory,” J. Appl. Math. Phys., vol. 04, no. 08, pp. 1379–1438, Jan. 2016, doi: 10.4236/jamp.2016.48147.
[15] I. Barukčić, “Anti Newton — Refutation of the Constancy of Newton’s Gravitational Constant Big G,” Int. J. Appl. Phys. Math., vol. 5, no. 2, pp. 126–136, 2015, doi: 10.17706/ijapm.2015.5.2.126-136.
[16] I. Barukčić, “Newton’s Gravitational Constant Big G Is Not a Constant,” J. Mod. Phys., vol. 07, no. 06, pp. 510–522, 2016, doi: 10.4236/jmp.2016.76053.
[17] I. Barukčić, “Anti Newton - Refutation Of The Constancy Of Newton’s Gravitatkional Constant G: List of Abstracts,” Quantum Theory Probl. Adv. QTPA 2014 Växjö Swed. June 9-12 2014, p. 63, Jan. 2014.
[18] I. Barukčić, “Anti Newton - Refutation Of The Constancy Of Newton’s Gravitatkional Constant G: Conferences Programm,” 2rd Int. Conf. Phys. Sci. Technol. ICPST 2016 January 7-8 2015 Dohar Qatar, Jan. 2015.
[19] H. Weyl, “Reine Infinitesimalgeometrie,” Math. Z., vol. 2, no. 3, pp. 384–411, Sep. 1918, doi: 10.1007/BF01199420.
[20] A. Danehkar, “On the significance of the weyl curvature in a relativistic cosmological model,” Mod. Phys. Lett. A, vol. 24, no. 38, pp. 3113–3127, Dec. 2009, doi: 10.1142/S0217732309032046.
[21] A. Einstein, “Über Gravitationswellen,” Sitzungsberichte K. Preußischen Akad. Wiss. Berl. Seite 154-167, 1918, Accessed: Mar. 07, 2019. [Online]. Available: http://adsabs.harvard.edu/abs/1918SPAW.......154E.
[22] F. Moulin, “Generalization of Einstein’s gravitational field equations,” Eur. Phys. J. C, vol. 77, no. 12, Dec. 2017, doi: 10.1140/epjc/s10052-017-5452-y.
[23] I. Barukčić, “The Physical Meaning of the Wave Function,” J. Appl. Math. Phys., vol. 04, no. 06, pp. 988–1023, Jan. 2016, doi: 10.4236/jamp.2016.46106.
[24] A. Einstein, The meaning of relativity. Four lectures delivered at Princeton University, May, 1921. Princeton: Princeton University Press, 1923.
[25] M. Laue, “Zur Dynamik der Relativitätstheorie,” Ann. Phys., vol. 340, no. 8, pp. 524–542, 1911, doi: 10.1002/andp.19113400808.
[26] A. Einstein and M. Grossmann, Entwurf einer verallgemeinerten Relativitätstheorie und einer Theorie der Gravitation: Physikalischer Teil von Albert Einstein. Mathematischer Teil von Marcel Grossmann. Leipzig: B. G. Teubner, 1913.
[27] D. C. Kay, Schaum’s outline of theory and problems of tensor calculus. New York: McGraw-Hill, 1988.
[28] D. Hilbert, “Axiomatisches Denken,” Math. Ann., vol. 78, no. 1, pp. 405–415, Dec. 1917, doi: 10.1007/BF01457115.
[29] K. Easwaran, “The Role of Axioms in Mathematics,” Erkenntnis, vol. 68, no. 3, pp. 381–391, May 2008, doi: 10.1007/s10670-008- 9106-1.
[30] A. Einstein, “Induktion and Deduktion in der Physik,” Berliner Tageblatt and Handelszeitung, Berlin (Germany), p. Suppl. 4, Dec. 25, 1919.
[31] G. W. Leibniz Freiherr von, Oeuvres philosophiques latines & françoises de feu Mr. de Leibnitz. Amsterdam (NL): Chez Jean Schreuder, 1765.
[32] I. Barukčić, “The Interior Logic of Inequalities,” Int. J. Math. Trends Technol. IJMTT, vol. 65, no. 7, pp. 146–155, 2019, doi: http://www.ijmttjournal.org/Volume-65/Issue-7/IJMTT-V65I7P524.pdf.
[33] I. Barukčić, “Classical Logic And The Division By Zero,” Int. J. Math. Trends Technol. IJMTT, vol. 65, no. 7, pp. 31–73, 2019, doi: 10.14445/22315373/IJMTT-V65I8P506.
[34] I. Barukčić, “Aristotle’s law of contradiction and Einstein’s special theory of relativity,” J. Drug Deliv. Ther., vol. 9, no. 2, pp. 125– 143, Mar. 2019, doi: 10.22270/jddt.v9i2.2389.
[35] B. D. Spinoza, Opera quae supersunt omnia / iterum edenda curavit, praefationes, vitam auctoris, nec non notitias, quae ad historiam scriptorum pertinent, Heinrich Eberhard Gottlob Paulus., vol. 2 Tomi. Ienae: In Bibliopolio Academico: In Bibliopolio Academico, 1802.
[36] G. Boole, An investigation of the laws of thought, on which are founded mathematical theories of logic and probabilities. New York, Dover, 1854.
[37] I. Barukčić, “The Geometrization of the Electromagnetic Field,” J. Appl. Math. Phys., vol. 04, no. 12, pp. 2135–2171, 2016, doi: 10.4236/jamp.2016.412211.
[38] L. Witten, “Geometry of Gravitation and Electromagnetism,” Phys. Rev., vol. 115, no. 1, pp. 206–214, Jul. 1959, doi: 10.1103/PhysRev.115.206.
[39] O. A. Olkhov, “New Approach to Geometrization of Electromagnetic Field,” Am. J. Phys. Appl., vol. 3, no. 6, Art. no. 6, Dec. 2015, doi: 10.11648/j.ajpa.20150306.16.
[40] D. Lehmkuhl, “Mass-Energy-Momentum: Only there Because of Spacetime?,” Br. J. Philos. Sci., vol. 62, no. 3, pp. 453–488, Sep. 2011, doi: 10.1093/bjps/axr003.
[41] D. Lehmkuhl, “Why Einstein did not believe that general relativity geometrizes gravity,” Stud. Hist. Philos. Sci. Part B Stud. Hist. Philos. Mod. Phys., vol. 46, pp. 316–326, May 2014, doi: 10.1016/j.shpsb.2013.08.002.
[42] É. Cotton, “Sur les variétés à trois dimensions,” Ann. Fac. Sci. Toulouse, vol. 1, no. 4, pp. 385–438, 1899, Accessed: Jun. 15, 2020. [Online]. Available: https://web.archive.org/web/20071010003140/http://www.numdam.org/numdambin/ fitem?id=AFST_1899_2_1_4_385_0.
[43] J. W. York, “Role of Conformal Three-Geometry in the Dynamics of Gravitation,” Phys. Rev. Lett., vol. 28, no. 16, pp. 1082–1085, Apr. 1972, doi: 10.1103/PhysRevLett.28.1082.
[44] B. Osano, “The Weyl curvature tensor, Cotton–York tensor and gravitational waves: A covariant consideration,” Int. J. Mod. Phys. D, vol. 27, no. 03, p. 1850021, Nov. 2017, doi: 10.1142/S0218271818500219.
[45] X. Calmet, D. Croon, and C. Fritz, “Non-locality in quantum field theory due to general relativity,” Eur. Phys. J. C, vol. 75, no. 12, p. 605, Dec. 2015, doi: 10.1140/epjc/s10052-015-3838-2.
[46] H. Kragh, “Big Bang: the etymology of a name,” Astron. Geophys., vol. 54, no. 2, p. 2.28-2.30, Apr. 2013, doi: 10.1093/astrogeo/att035.
[47] G. Lemaître, “Un Univers homogène de masse constante et de rayon croissant rendant compte de la vitesse radiale des nébuleuses extra-galactiques,” Ann. Société Sci. Brux., vol. 47, pp. 49–59, 1927, Accessed: Apr. 29, 2020. [Online]. Available: http://adsabs.harvard.edu/abs/1927ASSB...47...49L.
[48] A. McKellar, “Molecular Lines from the Lowest States of Diatomic Molecules Composed of Atoms Probably Present in Interstellar Space,” Publ. Dom. Astrophys. Obs. Vic., vol. 7, 1941, Accessed: Jun. 21, 2020. [Online]. Available: http://adsabs.harvard.edu/abs/1941PDAO....7..251M.
[49] A. A. Penzias and R. W. Wilson, “A Measurement of Excess Antenna Temperature at 4080 Mc/s.,” Astrophys. J., vol. 142, pp. 419– 421, Jul. 1965, doi: 10.1086/148307.
[50] R. H. Dicke, P. J. E. Peebles, P. G. Roll, and D. T. Wilkinson, “Cosmic Black-Body Radiation.,” Astrophys. J., vol. 142, pp. 414–419, Jul. 1965, doi: 10.1086/148306.
[51] M.-A. Tonnelat, La théorie du champ unifié d’Einstein et quelques-uns de ses développements. Paris (France): Gauthier-Villars, 1955.
[52] A. Einstein, “Einheitliche Feldtheorie von Gravitation und Elektrizität,” Preuss. Akad. Wiss. Phys-Math Kl. Sitzungsberichte, pp. 414– 419, 1925, doi: 10.1002/3527608958.ch30.
[53] L. Buoninfante, A. S. Koshelev, G. Lambiase, and A. Mazumdar, “Classical properties of non-local, ghost- and singularity-free gravity,” J. Cosmol. Astropart. Phys., vol. 2018, no. 09, pp. 034–034, Sep. 2018, doi: 10.1088/1475-7516/2018/09/034.
Ilija Barukčić, "Einstein’s field equations and non-locality," International Journal of Mathematics Trends and Technology (IJMTT), vol. 66, no. 6, pp. 146-167, 2020. Crossref, https://doi.org/10.14445/22315373/IJMTT-V66I6P515