Volume 66 | Issue 6 | Year 2020 | Article Id. IJMTT-V66I6P521 | DOI : https://doi.org/10.14445/22315373/IJMTT-V66I6P521
In the current work, we define a subclass Gp(α, λ, μ,x) of meromorphic univalent functions with generalized polyogarithm functions. We obtain coefficient estimates, extreme points, growth and distortion bounds, radii of meromorphically starlikeness and meromorphically convexity, partial sums, and integral means inequality for the class Gp(α, λ, μ,x). Further, it is shown that the class Gp(α, λ, μ,x) is closed under convex linear combination.
[1] K. R. Alhindi and M. Darus, A new class of meromorphic functions involving the polylogarithm function, J. Complex Anal. 2014, Art. ID 864805, 5 pp.
[2] O. Altintas, H. Irmak and H. M. Srivastava, A family of meromorphically univalent functions with positive coefficients, PanAmer. Math. J. 5 (1995), no. 1, 75{81.
[3] M. K. Aouf, A certain subclass of meromorphically starlike functions with positive coefficients, Rend. Mat. Appl. (7) 9 (1989), no. 2, 225{235.
[4] M. K. Aouf, On a certain class of meromorphic univalent functions with positive coefficients, Rend. Mat. Appl. (7) 11 (1991), no. 2, 209{219.
[5] M. K. Aouf and S. B. Joshi, On certain subclasses of meromorphically starlike functions with positive coefficients, Soochow J. Math. 24 (1998), no. 2, 79{90.
[6] M. K. Aouf, N. Magesh, S. Murthy and J. Jothibasu, On certain subclasses of meromorphic functions with positive coefficients, Stud. Univ. Babes-Bolyai Math. 58 (2013), no. 1, 31{42.
[7] S S Bhoosnurmath and S R Swamy, Certain integrals for classes of univalent meromorphic functions, Ganita, 44 (1) (1993), 19-25
[8] R. M. El-Ashwah, Some subclasses of meromorphically univalent functions, Stud. Univ. Babes-Bolyai Math. 55 (2010), no. 3, 131{147. A SUBCLASS OF MEROMORPHICALLY STARLIKE FUNCTIONS : : : 19
[9] M. R. Ganigi and B. A. Uralegaddi, New criteria for meromorphic univalent functions, Bull. Math. Soc. Sci. Math. R. S. Roumanie (N.S.) 33(81) (1989), no. 1, 9{13.
[10] A. W. Goodman, Univalent functions and nonanalytic curves, Proc. Amer. Math. Soc. 8 (1957), 598{601.
[11] S. Kavitha, S. Sivasubramanian and K. Muthunagai, A new subclass of meromorphic function with positive coefficients, Bull. Math. Anal. Appl. 2 (2010), no. 3, 109{121.
[12] G. W. Leibniz, Mathematische Schriften. Bd. IV, Herausgegeben von C. I. Gerhardt, Georg Olms Verlagsbuchhandlung, Hildesheim, 1962.
[13] J. E. Littlewood, On Inequalities in the Theory of Functions, Proc. London Math. Soc. (2) 23 (1925), no. 7, 481{519.
[14] N. Magesh, N. B. Gatti and S. Mayilvaganan, On certain subclasses of meromorphic functions with positive and fixed second coefficients involving the Liu-Srivastava linear operator, ISRN Math. Anal. 2012, Art. ID 698307, 11 pp.
[15] N. Magesh and V.Prameela, Partial sums for certain subclasses of meromorphically univalent func- tions, European J Math. Sci., 1(1) (2012), 88{99.
[16] N. Magesh and V.Prameela, Further properties on certain subclass of meromorphically starlike func- tions defined by Liu-Srivastava operator, Far East J. Math. Sci., 76(2) (2013) 255-271.
[17] M. L. Mogra, T. R. Reddy and O. P. Juneja, Meromorphic univalent functions with positive coefficients, Bull. Austral. Math. Soc. 32 (1985), no. 2, 161{176.
[18] K. I. Noor, Q. Z. Ahmad and J. Sokol, Applications of the diffierential operator to a class of mero- morphic univalent functions, J. Egyptian Math. Soc. 24 (2016), no. 2, 181{186.
[19] S. Porwal, N. Magesh and A. Khan, A new subclass of hypergeometric meromorphic functions with fixed second positive coefficients, An. Univ. Oradea Fasc. Mat. 22 (2015), no. 1, 33{39.
[20] S. Ruscheweyh, Neighborhoods of univalent functions, Proc. Amer. Math. Soc. 81 (1981), no. 4, 521{527.
[21] S. Sivasubramanian, N. Magesh and M. Darus, A new subclass of meromorphic functions with positive and fixed second coefficients, Tamkang J. Math. 44 (2013), no. 3, 271{278.
[22] V. Srinivas and P. Thirupathi Reddy, Notes on meromorphic functions defined by polylogarithm, Int.J. Math. Trends and Technol., 65 (2019), no. 11, 180 { 186.
[23] H. M. Srivastava, K. R. Alhindi and M. Darus, An investigation into the polylogarithm function and its associated class of meromorphic functions, Majeo Int. J. Sci. Technol., 10(2) (2016), 166 { 174.
[24] P.Thirupathi Reddy, B. Venkateswarlu, Rajkumar N. Ingle and S. Sreelakshmi, On a class of mero- morphic functions with positive coefficients involving polylogarithm functions, Libertas Math. (new series), 39 (2019), no. 2, 45{57.
[25] B. A. Uralegaddi, Meromorphically starlike functions with positive and fixed second coecients, Kyungpook Math. J. 29 (1989), no. 1, 64{68.
[26] B. A. Uralegaddi and M. D. Ganigi, A certain class of meromorphically starlike functions with positive coefficients, Pure Appl. Math. Sci. 26 (1987), no. 1-2, 75{81.
[27] B. A. Uralegaddi and C. Somanatha, Certain differential operators for meromorphic functions, Hous- ton J. Math. 17 (1991), no. 2, 279{284.
[28] B. A. B. A. Uralegaddi and C. Somanatha, New criteria for meromorphic starlike univalent functions, Bull. Austral. Math. Soc. 43 (1991), no. 1, 137{140.
[29] B. Venkateswarlu, P. Thirupathi Reddy and N. Rani, on a certain subclass of meromorphic functions with positive coefficients involving polylogarithm functions, Commun. Optim. Theory 2020 (2020), Article ID 6.
S. R. SWAMY, J. NIRMALA, "CERTAIN SUBCLASSES OF MEROMORPHIC FUNCTIONS ASSOCIATED WITH GENERALIZED POLYLOGARITHM FUNCTIONS," International Journal of Mathematics Trends and Technology (IJMTT), vol. 66, no. 6, pp. 205-223, 2020. Crossref, https://doi.org/10.14445/22315373/IJMTT-V66I6P521