Volume 66 | Issue 6 | Year 2020 | Article Id. IJMTT-V66I6P529 | DOI : https://doi.org/10.14445/22315373/IJMTT-V66I6P529
BN-algebra is a non-empty set (X,*,0) satisfies the axioms (B1) x*x=0, (B2) x*0 = x and (BN) (x*y)*z=(0*z)*(y*x) for all x,y,z ε X. BN1-algebra is a BN-algebra that satisfies axiom (BN1) (x * y) * z = (0 * z) * (y * x). The operation Θ is called a subcompanion when satisfies ((x Θ y) * ) * y = 0 in BN1-algebra. The subcompanion operation Θ is said to be a comapanion if (z * x) * y = 0, then z * (x Θ y) =0. In this paper, we develop the formula definition of companion BN1-algebra. We also investigate the properties of companion BN1-algebra, such as being unique or singular and commutative with certain conditions.
[1] H. A. S. Abujabal dan N. O. Al-Shehri , On Left Derivations Of BCIalgebras, Soochow Journal Of Mathematics, 33(2007), 435–444.
[2] H. A. S. Abujabal dan N. O. Al-Shehri, Some Results On Derivations Of BCI-algebras, PK ISSN 0022- 2941 CODEN JNSMAC, 46 (2006), 13–19.
[3] [N. O. Al-shehrie, Derivation of B-algebras, JKAU: Sci, 22 (2010), 71–82.
[4] N. O. Al-shehrie, Derivations of MV-algebras, International Journal of Mathematics and Mathematical Sciences, (2010), 1–7.
[5] D. S. Dummit dan R. M. Foote, Abstract Algebra, 3rd Edition, New Jersey: Prentice Hall, Inc, 2003.
[6] J. S. Durbin, Modern Algebra: An Introduction, 3rd Edition, New Jersey: John Wiley & Sons, 1992.
[7] G. Dymek dan A. Walendziak, (Fuzzy) Ideals of BN-Algebras, Scientific World Journal,(2015), 1–9.
[8] J. C. Endam dan J. P. VilelaThe, Second Isomorphism Theorem for Balgebras, Applied Mathematical Sciences, 8(2014), 1865–1872.
[9] E. Fitria, S. Gemawati dan A. Hadi, On Derivasi BN-Algebra, preprint, 2019.
[10] E. Fitria, S. Gemawati dan Kartini, Prime Ideals in B-Algebras, International Journal of Algebra, 11(2017), 30–309.
[11] S. Ilbira, A. Firat, dan Y. B. Jun, On symmetric bi-derivations of BCI- algebras, Applied Mathematical Sciences, 5 (2011), 2957-2966.
[12] K. Iseki, On BCI-algebras, Math. Seminar Notes, 8(1980), 125–130.
[13] Y. B. Jun dan X. L. Xin, On derivations of BCI-algebras, Inform. Sci.,159(2004), 167–176.
[14] C. B. Kim and H. S. Kim, On BG-algebras, Demo. Math., 41(2008), 497–505.
[15] C. B. Kim and H. S. Kim, On BM-algebras, Sci.Math. Japonicae 63(2006), 421–427.
[16] C. B. Kim dan H. S. Kim, On BN-algebras, Kyungpook Math, 53 (2013),175–184.
[17] L. D. Naingue dan J. P. Vilela, On Companion B-algebra, EJPAM, 12(2019), 1248-1259.
[18] J. Neggers dan H. S. Kim, On B-algebras, Mate. Vesnik, 54(2002), 21–29.
[19] M. A. Ozturk, Y. Ceven, dan Y. B. Jun, Generalized derivations of BCI- algebras, Honam Mathematical Journal, 31 (2009), 601-609.
[20] Qing Ping Hu and Xin Li, On proper BCH-algebras, Math. Japonica, 30 (1985), 659-661.
[21] C. Prabpayak dan U. Leerawat, On Derivations of BCC-algebras, Kasetsart J. (Nat. Sci.), 43(2009), 398– 401.
[22] A. Walendziak, Some Results On BN1-algebras, Scientiae Mathematicae Japonicae 78, 3 (2015), 335– 342.
Annisa Mursalima, Sri Gemawati, Syamsudhuha., "On Companion BN1-algebra," International Journal of Mathematics Trends and Technology (IJMTT), vol. 66, no. 6, pp. 292-296, 2020. Crossref, https://doi.org/10.14445/22315373/IJMTT-V66I6P529