Volume 66 | Issue 7 | Year 2020 | Article Id. IJMTT-V66I7P509 | DOI : https://doi.org/10.14445/22315373/IJMTT-V66I7P509
The spectrum, non zero points of its approximate point spectrum and joint approximate point spectrum of class of k-quasi-parahyponormal operators are characterized in this paper.
[1] Aluthge, A: On p-hyponormal operators for 0 < p < 1. Integral Equ. Oper. Theory 13, 307-315 (1990).
[2] S. K. Berberian, Approximate proper vectors, Proc. Amer. Math. Soc., 13 (1962), 111 - 114.
[3] J. B. Conway, B. B. Morrel, Operators that are points of spectral continuity, Integr. Equ.Oper.Theory, 2 (1979), 174-198.
[4] S. V. Djordjevic, Continuity of the essential spectrum in the class of quasihyponormal operators,Vesnik Math., 50 (1998), 71-74.
[5] B. P. Duggal, I. H. Jeon and I. H. Kim, Continuity of the spectrum on a class of upper triangular operator matrices, J. Math. Anal. Appl., 370 (2010), 584-587.
[6] B. P. Duggal, I. H. Jeon and I. H. Kim, On -paranormal contractions and properties for class A operators, Linear Algebra Appl., 436 (2012), 954-962.
[7] Furuta, T: On the class of paranormal operators. Proc. Jpn. Acad. 43, 594-598 (1967).
[8] Furuta, T: Invitation to Linear Operators. Taylor and Francis, London (2001).
[9] P. R. Halmos, A Hilbert Space Problem Book, Springer-Verlag, New York, 1982.
[10] Y. M. Han, A. H. Kim, A note on -paranormal operators, Integr. Equ. Oper. Theory, 49 (4) (2004),435-444.
[11] J. K. Han, H. Y. Lee, Invertible completions of 2 2 upper triangular operator matrices, Proc.Amer. Math. Soc., 128 (1999), 119-123.
[12] I. S. Hwang, W. Y. Lee, The spectrum is continuous on the set of p-hyponormal operators, Math.Z., 235 (2000), 151-157.
[13] I.S. Hwang and W.Y. Lee, On the continuity of spectra of Toeplitz operators,Arch. Math. 70 (1998), 66-73.
[14] Mahmoud M. Kutkut, On the classes of Parahyponormal operator, Journ. Math. Sci., 4(2) (1993), 73-88.
[15] S. Mecheri, On a new class of operators and Weyl type theorems, Filomat, 27 (2013), 629-636.
[16] P. Pagacz, On Wold-type decomposition, Linear Algebra Appl., 436 (2012), 3605-3071.
[17] J. L. Shen, A. Chen, The spectrum properties of quasi * paranormal operators, Chinese Annals of Math. (in Chinese), 34 (6) (2013), 663-670.
S.Parvatham, D.Senthilkumar, "Spectral Properties of k-Quasi-Parahyponormal Operators," International Journal of Mathematics Trends and Technology (IJMTT), vol. 66, no. 7, pp. 73-76, 2020. Crossref, https://doi.org/10.14445/22315373/IJMTT-V66I7P509