Volume 66 | Issue 7 | Year 2020 | Article Id. IJMTT-V66I7P514 | DOI : https://doi.org/10.14445/22315373/IJMTT-V66I7P514
This paper we discusses with spatially symmetric operators of Strum-Liouville problem of eigenvalues and eigenfunctions, of the differential operators - (d2/dx2)+P(x). We simplify the proofs of theorems due to Borg, Levinson, Hochstadt and Lieverman. In the present article Strum-Liouville operators of spatially symmetric type
[1] Takashi Suzuki(1985) on the inverse sturm – Liouville problem of differential for spatilly symmetric operators-1[Journal of differential equations 56,165-194)
[2] M H Annaby and Z S Mansour Basic sturm-Liouville problems Journal Of Physics A: Mathematical And General
[3] Mohammed Al-Refai and Thabet Abdeljawad Fundamental Results of Conformable Sturm-Liouville Eigenvalue Problems [Hindwai Complicity]
[4] Pergrnon (Oxford 1980) sturm – liouville invers iegenvalue problem[Mechanics today vol-5 281-295]
[5] James ward ruel and ruel c. Churchill brown(1993) sturm – liouville problem and Applications [Fourier series and Boundary value problem]
[6] Dr.M.K.Venkataraman(1992) sturm – liouville system eigenvalues, eigenfunctin [Higher Mathematics for Enginering and Science.
B.Kavitha, Dr.C.Vimala, "Spatially symmetric operators of Strum - Liouville Problems," International Journal of Mathematics Trends and Technology (IJMTT), vol. 66, no. 7, pp. 104-111, 2020. Crossref, https://doi.org/10.14445/22315373/IJMTT-V66I7P514