Volume 66 | Issue 8 | Year 2020 | Article Id. IJMTT-V66I8P501 | DOI : https://doi.org/10.14445/22315373/IJMTT-V66I8P501
This study is the development of the companion BN1 algebra concept that researched by A. Mursalima, et al. [1]. The companion concept is developed by adding the subalgebra and ideal concepts to obtain Θ-Subalgebra and Θ-Ideal in BN1-algebra. The final result of this research is in the the form of constructing the definitions and properties of Θ-Subalgebra and Θ-Ideal which are stated in several theorems, including the nature of the relationship.
[1] A. Mursalima, S. Gemawati and Syamsudhuna, On Companion BN1-algebras, International Journal of Mathematics Trends and Technology, 66 (2020), 292–296.
[2] A. Walendziak, On BF-algebras, Scientiae Mathematica Slovaca, 57 (2007), 119–128.
[3] A. Walendziak, Some Results On BN1-algebras, Scientiae Mathematicae Japonicae 78, 3 (2015), 335–342
[4] C. B. Kim and H. S. Kim, On BG-algebras, Demo. Math., 41 (2008), 497–505
[5] C. B. Kim and H. S. Kim, On BM-algebras, Sci. Math. Japonicae 63 (2006), 421–427.
[6] C. B. Kim and H. S. Kim, On BN-algebras, Kyungpook Math, 53 (2013), 175–184.
[7] C. Prabpayak and U. Leerawat, On Derivations of BCC-algebras, Kasetsart J. (Nat. Sci.), 43 (2009), 398–401.
[8] D. S. Dummit and R. M. Foote, Abstract Algebra, 3rd Edition, New Jersey: Prentice Hall, Inc, 2003.
[9] E. Fitria, S. Gemawati and A. Hadi, On Derivasi BN-Algebra, preprint, 2019.
[10] E. Fitria, S. Gemawati and Kartini, Prime Ideals in B-Algebras, International Journal of Algebra, 11 (2017), 30–309.
[11] G. Dymek and A. Walendziak, (Fuzzy) Ideals of BN-Algebras, Scientific World Journal,(2015), 1–9.
[12] H. A. S. Abujabal and N. O. Al-Shehri , On Left Derivations Of BCIalgebras, Soochow Journal Of Mathematics, 33 (2007), 435–444.
[13] H. A. S. Abujabal and N. O. Al-Shehri, Some Results On Derivations Of BCI-algebras, PK ISSN 0022- 2941 CODEN JNSMAC, 46 (2006), 13–19.
[14] J. C. Endam and J. P. VilelaThe, Second Isomorphism Theorem for Balgebras,Applied Mathematical Sciences, 8(2014), 1865–1872
[15] J. Neggers and H. S. Kim, On B-algebras, Mate. Vesnik, 54 (2002), 21–29.
[16] J. S. Durbin, Modern Algebra: An Introduction, 3rd Edition, New Jersey: John Wiley & Sons, 1992.
[17] K. Iseki, On BCI-algebras, Math. Seminar Notes, 8 (1980), 125–130.
[18] L. D. Naingue dan J. P. Vilela, On Companion B-algebra, EJPAM, 12 (2019), 1248-1259.
Santri Ayu Aminah, Sri Gemawati, Syamsudhuha, "Θ-Subalgebra and Θ-Ideal in BN1-algebra," International Journal of Mathematics Trends and Technology (IJMTT), vol. 66, no. 8, pp. 1-5, 2020. Crossref, https://doi.org/10.14445/22315373/IJMTT-V66I8P501